generated from thinkode/modelRepository
239 lines
5.8 KiB
Python
239 lines
5.8 KiB
Python
"""Classes for easy interpolation of trajectories and curves."""
|
|
|
|
import numpy as np
|
|
|
|
|
|
class Interpolator:
|
|
"""Poorman's linear interpolator.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
tt : list, optional
|
|
List of time frames for the interpolator.
|
|
|
|
ss : list, optional
|
|
List of values for the interpolator.
|
|
|
|
ttss : list, optional
|
|
Lists of time frames and their correspondients values for the
|
|
interpolator. This argument can be used instead of ``tt`` and ``ss``
|
|
to instantiate the interpolator using an unique argument.
|
|
|
|
left : float, optional
|
|
Value to return when ``t < tt[0]``.
|
|
|
|
right : float, optional
|
|
Value to return when ``t > tt[-1]``.
|
|
|
|
|
|
Examples
|
|
--------
|
|
|
|
.. code:: python
|
|
|
|
# instantiate using `tt` and `ss`
|
|
interpolator = Interpolator(tt=[0, 1, 2], ss=[3, 4, 5])
|
|
|
|
# instantiate using `ttss`
|
|
interpolator = Interpolator(ttss=[[0, 3], [1, 4], [2, 5]]) # [t, value]
|
|
"""
|
|
|
|
def __init__(self, tt=None, ss=None, ttss=None, left=None, right=None):
|
|
if ttss is not None:
|
|
tt, ss = zip(*ttss)
|
|
|
|
self.tt = 1.0 * np.array(tt)
|
|
self.ss = 1.0 * np.array(ss)
|
|
self.left = left
|
|
self.right = right
|
|
self.tmin, self.tmax = min(tt), max(tt)
|
|
|
|
def __call__(self, t):
|
|
"""Interpolates ``t``.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
t : float
|
|
Time frame for which the correspondent value will be returned.
|
|
"""
|
|
return np.interp(t, self.tt, self.ss, self.left, self.right)
|
|
|
|
|
|
class Trajectory:
|
|
"""Trajectory compound by time frames and (x, y) pixels.
|
|
|
|
It's designed as an interpolator, so you can get the position at a given
|
|
time ``t``. You can instantiate it from a file using the methods
|
|
``from_file`` and ``load_list``.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
|
|
tt : list or numpy.ndarray
|
|
Time frames.
|
|
|
|
xx : list or numpy.ndarray
|
|
X positions in the trajectory.
|
|
|
|
yy : list or numpy.ndarray
|
|
Y positions in the trajectory.
|
|
|
|
|
|
Examples
|
|
--------
|
|
|
|
>>> trajectory = Trajectory([0, .166, .333], [554, 474, 384], [100, 90, 91])
|
|
"""
|
|
|
|
def __init__(self, tt, xx, yy):
|
|
self.tt = 1.0 * np.array(tt)
|
|
self.xx = np.array(xx)
|
|
self.yy = np.array(yy)
|
|
self.update_interpolators()
|
|
|
|
def __call__(self, t):
|
|
"""Interpolates the trajectory at the given time ``t``.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
t : float
|
|
Time for which to the corresponding position will be returned.
|
|
"""
|
|
return np.array([self.xi(t), self.yi(t)])
|
|
|
|
def addx(self, x):
|
|
"""Adds a value to the ``xx`` position of the trajectory.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
x : int
|
|
Value added to ``xx`` in the trajectory.
|
|
|
|
|
|
Returns
|
|
-------
|
|
|
|
Trajectory : new instance with the new X position included.
|
|
"""
|
|
return Trajectory(self.tt, self.xx + x, self.yy)
|
|
|
|
def addy(self, y):
|
|
"""Adds a value to the ``yy`` position of the trajectory.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
y : int
|
|
Value added to ``yy`` in the trajectory.
|
|
|
|
|
|
Returns
|
|
-------
|
|
|
|
Trajectory : new instance with the new Y position included.
|
|
"""
|
|
return Trajectory(self.tt, self.xx, self.yy + y)
|
|
|
|
def update_interpolators(self):
|
|
"""Updates the internal X and Y position interpolators for the instance."""
|
|
self.xi = Interpolator(self.tt, self.xx)
|
|
self.yi = Interpolator(self.tt, self.yy)
|
|
|
|
def txy(self, tms=False):
|
|
"""Returns all times with the X and Y values of each position.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
tms : bool, optional
|
|
If is ``True``, the time will be returned in milliseconds.
|
|
"""
|
|
return zip((1000 if tms else 1) * self.tt, self.xx, self.yy)
|
|
|
|
def to_file(self, filename):
|
|
"""Saves the trajectory data in a text file.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
filename : str
|
|
Path to the location of the new trajectory text file.
|
|
"""
|
|
np.savetxt(
|
|
filename,
|
|
np.array(list(self.txy(tms=True))),
|
|
fmt="%d",
|
|
delimiter="\t",
|
|
)
|
|
|
|
@staticmethod
|
|
def from_file(filename):
|
|
"""Instantiates an object of Trajectory using a data text file.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
filename : str
|
|
Path to the location of trajectory text file to load.
|
|
|
|
|
|
Returns
|
|
-------
|
|
|
|
Trajectory : new instance loaded from text file.
|
|
"""
|
|
arr = np.loadtxt(filename, delimiter="\t")
|
|
tt, xx, yy = arr.T
|
|
return Trajectory(1.0 * tt / 1000, xx, yy)
|
|
|
|
@staticmethod
|
|
def save_list(trajs, filename):
|
|
"""Saves a set of trajectories into a text file.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
trajs : list
|
|
List of trajectories to be saved.
|
|
|
|
filename : str
|
|
Path of the text file that will store the trajectories data.
|
|
"""
|
|
N = len(trajs)
|
|
arr = np.hstack([np.array(list(t.txy(tms=True))) for t in trajs])
|
|
np.savetxt(
|
|
filename,
|
|
arr,
|
|
fmt="%d",
|
|
delimiter="\t",
|
|
header="\t".join(N * ["t(ms)", "x", "y"]),
|
|
)
|
|
|
|
@staticmethod
|
|
def load_list(filename):
|
|
"""Loads a list of trajectories from a data text file.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
filename : str
|
|
Path of the text file that stores the data of a set of trajectories.
|
|
|
|
|
|
Returns
|
|
-------
|
|
|
|
list : List of trajectories loaded from the file.
|
|
"""
|
|
arr = np.loadtxt(filename, delimiter="\t").T
|
|
Nlines = arr.shape[0]
|
|
return [
|
|
Trajectory(tt=1.0 * a[0] / 1000, xx=a[1], yy=a[2])
|
|
for a in np.split(arr, Nlines / 3)
|
|
]
|