generated from thinkode/modelRepository
Initial commit and v1.0
This commit is contained in:
7
demucs/__init__.py
Normal file
7
demucs/__init__.py
Normal file
@@ -0,0 +1,7 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
__version__ = "4.0.1"
|
||||
10
demucs/__main__.py
Normal file
10
demucs/__main__.py
Normal file
@@ -0,0 +1,10 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from .separate import main
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
288
demucs/apply.py
Normal file
288
demucs/apply.py
Normal file
@@ -0,0 +1,288 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""
|
||||
Code to apply a model to a mix. It will handle chunking with overlaps and
|
||||
inteprolation between chunks, as well as the "shift trick".
|
||||
"""
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
import random
|
||||
import typing as tp
|
||||
|
||||
import torch as th
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
import tqdm
|
||||
from log import log_step
|
||||
|
||||
from .demucs import Demucs
|
||||
from .hdemucs import HDemucs
|
||||
from .htdemucs import HTDemucs
|
||||
from .utils import center_trim, DummyPoolExecutor
|
||||
|
||||
Model = tp.Union[Demucs, HDemucs, HTDemucs]
|
||||
|
||||
|
||||
class BagOfModels(nn.Module):
|
||||
def __init__(self, models: tp.List[Model],
|
||||
weights: tp.Optional[tp.List[tp.List[float]]] = None,
|
||||
segment: tp.Optional[float] = None):
|
||||
"""
|
||||
Represents a bag of models with specific weights.
|
||||
You should call `apply_model` rather than calling directly the forward here for
|
||||
optimal performance.
|
||||
|
||||
Args:
|
||||
models (list[nn.Module]): list of Demucs/HDemucs models.
|
||||
weights (list[list[float]]): list of weights. If None, assumed to
|
||||
be all ones, otherwise it should be a list of N list (N number of models),
|
||||
each containing S floats (S number of sources).
|
||||
segment (None or float): overrides the `segment` attribute of each model
|
||||
(this is performed inplace, be careful is you reuse the models passed).
|
||||
"""
|
||||
super().__init__()
|
||||
assert len(models) > 0
|
||||
first = models[0]
|
||||
for other in models:
|
||||
assert other.sources == first.sources
|
||||
assert other.samplerate == first.samplerate
|
||||
assert other.audio_channels == first.audio_channels
|
||||
if segment is not None:
|
||||
other.segment = segment
|
||||
|
||||
self.audio_channels = first.audio_channels
|
||||
self.samplerate = first.samplerate
|
||||
self.sources = first.sources
|
||||
self.models = nn.ModuleList(models)
|
||||
|
||||
if weights is None:
|
||||
weights = [[1. for _ in first.sources] for _ in models]
|
||||
else:
|
||||
assert len(weights) == len(models)
|
||||
for weight in weights:
|
||||
assert len(weight) == len(first.sources)
|
||||
self.weights = weights
|
||||
|
||||
@property
|
||||
def max_allowed_segment(self) -> float:
|
||||
max_allowed_segment = float('inf')
|
||||
for model in self.models:
|
||||
if isinstance(model, HTDemucs):
|
||||
max_allowed_segment = min(max_allowed_segment, float(model.segment))
|
||||
return max_allowed_segment
|
||||
|
||||
def forward(self, x):
|
||||
raise NotImplementedError("Call `apply_model` on this.")
|
||||
|
||||
|
||||
class TensorChunk:
|
||||
def __init__(self, tensor, offset=0, length=None):
|
||||
total_length = tensor.shape[-1]
|
||||
assert offset >= 0
|
||||
assert offset < total_length
|
||||
|
||||
if length is None:
|
||||
length = total_length - offset
|
||||
else:
|
||||
length = min(total_length - offset, length)
|
||||
|
||||
if isinstance(tensor, TensorChunk):
|
||||
self.tensor = tensor.tensor
|
||||
self.offset = offset + tensor.offset
|
||||
else:
|
||||
self.tensor = tensor
|
||||
self.offset = offset
|
||||
self.length = length
|
||||
self.device = tensor.device
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
shape = list(self.tensor.shape)
|
||||
shape[-1] = self.length
|
||||
return shape
|
||||
|
||||
def padded(self, target_length):
|
||||
delta = target_length - self.length
|
||||
total_length = self.tensor.shape[-1]
|
||||
assert delta >= 0
|
||||
|
||||
start = self.offset - delta // 2
|
||||
end = start + target_length
|
||||
|
||||
correct_start = max(0, start)
|
||||
correct_end = min(total_length, end)
|
||||
|
||||
pad_left = correct_start - start
|
||||
pad_right = end - correct_end
|
||||
|
||||
out = F.pad(self.tensor[..., correct_start:correct_end], (pad_left, pad_right))
|
||||
assert out.shape[-1] == target_length
|
||||
return out
|
||||
|
||||
|
||||
def tensor_chunk(tensor_or_chunk):
|
||||
if isinstance(tensor_or_chunk, TensorChunk):
|
||||
return tensor_or_chunk
|
||||
else:
|
||||
assert isinstance(tensor_or_chunk, th.Tensor)
|
||||
return TensorChunk(tensor_or_chunk)
|
||||
|
||||
|
||||
def apply_model(model: tp.Union[BagOfModels, Model],
|
||||
mix: tp.Union[th.Tensor, TensorChunk],
|
||||
shifts: int = 1, split: bool = True,
|
||||
overlap: float = 0.25, transition_power: float = 1.,
|
||||
progress: bool = False, device=None,
|
||||
num_workers: int = 0, segment: tp.Optional[float] = None,
|
||||
pool=None) -> th.Tensor:
|
||||
"""
|
||||
Apply model to a given mixture.
|
||||
|
||||
Args:
|
||||
shifts (int): if > 0, will shift in time `mix` by a random amount between 0 and 0.5 sec
|
||||
and apply the oppositve shift to the output. This is repeated `shifts` time and
|
||||
all predictions are averaged. This effectively makes the model time equivariant
|
||||
and improves SDR by up to 0.2 points.
|
||||
split (bool): if True, the input will be broken down in 8 seconds extracts
|
||||
and predictions will be performed individually on each and concatenated.
|
||||
Useful for model with large memory footprint like Tasnet.
|
||||
progress (bool): if True, show a progress bar (requires split=True)
|
||||
device (torch.device, str, or None): if provided, device on which to
|
||||
execute the computation, otherwise `mix.device` is assumed.
|
||||
When `device` is different from `mix.device`, only local computations will
|
||||
be on `device`, while the entire tracks will be stored on `mix.device`.
|
||||
num_workers (int): if non zero, device is 'cpu', how many threads to
|
||||
use in parallel.
|
||||
segment (float or None): override the model segment parameter.
|
||||
"""
|
||||
# if device is None:
|
||||
# device = mix.device
|
||||
if device is None:
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
else:
|
||||
device = th.device(device)
|
||||
if pool is None:
|
||||
if num_workers > 0 and device.type == 'cpu':
|
||||
pool = ThreadPoolExecutor(num_workers)
|
||||
else:
|
||||
pool = DummyPoolExecutor()
|
||||
kwargs: tp.Dict[str, tp.Any] = {
|
||||
'shifts': shifts,
|
||||
'split': split,
|
||||
'overlap': overlap,
|
||||
'transition_power': transition_power,
|
||||
'progress': progress,
|
||||
'device': device,
|
||||
'pool': pool,
|
||||
'segment': segment,
|
||||
}
|
||||
out: tp.Union[float, th.Tensor]
|
||||
if isinstance(model, BagOfModels):
|
||||
# Special treatment for bag of model.
|
||||
# We explicitely apply multiple times `apply_model` so that the random shifts
|
||||
# are different for each model.
|
||||
estimates: tp.Union[float, th.Tensor] = 0.
|
||||
totals = [0.] * len(model.sources)
|
||||
for sub_model, model_weights in zip(model.models, model.weights):
|
||||
original_model_device = next(iter(sub_model.parameters())).device
|
||||
sub_model.to(device)
|
||||
|
||||
out = apply_model(sub_model, mix, **kwargs)
|
||||
sub_model.to(original_model_device)
|
||||
for k, inst_weight in enumerate(model_weights):
|
||||
out[:, k, :, :] *= inst_weight
|
||||
totals[k] += inst_weight
|
||||
estimates += out
|
||||
del out
|
||||
|
||||
assert isinstance(estimates, th.Tensor)
|
||||
for k in range(estimates.shape[1]):
|
||||
estimates[:, k, :, :] /= totals[k]
|
||||
return estimates
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
assert transition_power >= 1, "transition_power < 1 leads to weird behavior."
|
||||
batch, channels, length = mix.shape
|
||||
if shifts:
|
||||
kwargs['shifts'] = 0
|
||||
max_shift = int(0.5 * model.samplerate)
|
||||
mix = tensor_chunk(mix)
|
||||
assert isinstance(mix, TensorChunk)
|
||||
padded_mix = mix.padded(length + 2 * max_shift)
|
||||
out = 0.
|
||||
for _ in range(shifts):
|
||||
offset = random.randint(0, max_shift)
|
||||
shifted = TensorChunk(padded_mix, offset, length + max_shift - offset)
|
||||
shifted_out = apply_model(model, shifted, **kwargs)
|
||||
out += shifted_out[..., max_shift - offset:]
|
||||
out /= shifts
|
||||
assert isinstance(out, th.Tensor)
|
||||
return out
|
||||
elif split:
|
||||
kwargs['split'] = False
|
||||
out = th.zeros(batch, len(model.sources), channels, length, device=mix.device)
|
||||
sum_weight = th.zeros(length, device=mix.device)
|
||||
if segment is None:
|
||||
segment = model.segment
|
||||
assert segment is not None and segment > 0.
|
||||
segment_length: int = int(model.samplerate * segment)
|
||||
stride = int((1 - overlap) * segment_length)
|
||||
offsets = range(0, length, stride)
|
||||
scale = float(format(stride / model.samplerate, ".2f"))
|
||||
# We start from a triangle shaped weight, with maximal weight in the middle
|
||||
# of the segment. Then we normalize and take to the power `transition_power`.
|
||||
# Large values of transition power will lead to sharper transitions.
|
||||
weight = th.cat([th.arange(1, segment_length // 2 + 1, device=device),
|
||||
th.arange(segment_length - segment_length // 2, 0, -1, device=device)])
|
||||
assert len(weight) == segment_length
|
||||
# If the overlap < 50%, this will translate to linear transition when
|
||||
# transition_power is 1.
|
||||
weight = (weight / weight.max())**transition_power
|
||||
futures = []
|
||||
for offset in offsets:
|
||||
chunk = TensorChunk(mix, offset, segment_length)
|
||||
future = pool.submit(apply_model, model, chunk, **kwargs)
|
||||
futures.append((future, offset))
|
||||
offset += segment_length
|
||||
|
||||
total_chunks = len(futures)
|
||||
for i, (future, offset) in enumerate(futures):
|
||||
chunk_out = future.result()
|
||||
chunk_length = chunk_out.shape[-1]
|
||||
out[..., offset:offset + segment_length] += (
|
||||
weight[:chunk_length] * chunk_out).to(mix.device)
|
||||
sum_weight[offset:offset + segment_length] += weight[:chunk_length].to(mix.device)
|
||||
|
||||
# Print progress
|
||||
percent = (i + 1) * 100 / total_chunks
|
||||
log_step("audio_separation", int(percent), "separating the audio file")
|
||||
# if progress:
|
||||
# futures = tqdm.tqdm(futures, unit_scale=scale, ncols=120, unit='seconds')
|
||||
# for future, offset in futures:
|
||||
# chunk_out = future.result()
|
||||
# chunk_length = chunk_out.shape[-1]
|
||||
# out[..., offset:offset + segment_length] += (
|
||||
# weight[:chunk_length] * chunk_out).to(mix.device)
|
||||
# sum_weight[offset:offset + segment_length] += weight[:chunk_length].to(mix.device)
|
||||
assert sum_weight.min() > 0
|
||||
out /= sum_weight
|
||||
assert isinstance(out, th.Tensor)
|
||||
return out
|
||||
else:
|
||||
valid_length: int
|
||||
if isinstance(model, HTDemucs) and segment is not None:
|
||||
valid_length = int(segment * model.samplerate)
|
||||
elif hasattr(model, 'valid_length'):
|
||||
valid_length = model.valid_length(length) # type: ignore
|
||||
else:
|
||||
valid_length = length
|
||||
mix = tensor_chunk(mix)
|
||||
assert isinstance(mix, TensorChunk)
|
||||
padded_mix = mix.padded(valid_length).to(device)
|
||||
with th.no_grad():
|
||||
out = model(padded_mix)
|
||||
assert isinstance(out, th.Tensor)
|
||||
return center_trim(out, length)
|
||||
265
demucs/audio.py
Normal file
265
demucs/audio.py
Normal file
@@ -0,0 +1,265 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
import json
|
||||
import subprocess as sp
|
||||
from pathlib import Path
|
||||
|
||||
import lameenc
|
||||
import julius
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchaudio as ta
|
||||
import typing as tp
|
||||
|
||||
from .utils import temp_filenames
|
||||
|
||||
|
||||
def _read_info(path):
|
||||
stdout_data = sp.check_output([
|
||||
'ffprobe', "-loglevel", "panic",
|
||||
str(path), '-print_format', 'json', '-show_format', '-show_streams'
|
||||
])
|
||||
return json.loads(stdout_data.decode('utf-8'))
|
||||
|
||||
|
||||
class AudioFile:
|
||||
"""
|
||||
Allows to read audio from any format supported by ffmpeg, as well as resampling or
|
||||
converting to mono on the fly. See :method:`read` for more details.
|
||||
"""
|
||||
def __init__(self, path: Path):
|
||||
self.path = Path(path)
|
||||
self._info = None
|
||||
|
||||
def __repr__(self):
|
||||
features = [("path", self.path)]
|
||||
features.append(("samplerate", self.samplerate()))
|
||||
features.append(("channels", self.channels()))
|
||||
features.append(("streams", len(self)))
|
||||
features_str = ", ".join(f"{name}={value}" for name, value in features)
|
||||
return f"AudioFile({features_str})"
|
||||
|
||||
@property
|
||||
def info(self):
|
||||
if self._info is None:
|
||||
self._info = _read_info(self.path)
|
||||
return self._info
|
||||
|
||||
@property
|
||||
def duration(self):
|
||||
return float(self.info['format']['duration'])
|
||||
|
||||
@property
|
||||
def _audio_streams(self):
|
||||
return [
|
||||
index for index, stream in enumerate(self.info["streams"])
|
||||
if stream["codec_type"] == "audio"
|
||||
]
|
||||
|
||||
def __len__(self):
|
||||
return len(self._audio_streams)
|
||||
|
||||
def channels(self, stream=0):
|
||||
return int(self.info['streams'][self._audio_streams[stream]]['channels'])
|
||||
|
||||
def samplerate(self, stream=0):
|
||||
return int(self.info['streams'][self._audio_streams[stream]]['sample_rate'])
|
||||
|
||||
def read(self,
|
||||
seek_time=None,
|
||||
duration=None,
|
||||
streams=slice(None),
|
||||
samplerate=None,
|
||||
channels=None):
|
||||
"""
|
||||
Slightly more efficient implementation than stempeg,
|
||||
in particular, this will extract all stems at once
|
||||
rather than having to loop over one file multiple times
|
||||
for each stream.
|
||||
|
||||
Args:
|
||||
seek_time (float): seek time in seconds or None if no seeking is needed.
|
||||
duration (float): duration in seconds to extract or None to extract until the end.
|
||||
streams (slice, int or list): streams to extract, can be a single int, a list or
|
||||
a slice. If it is a slice or list, the output will be of size [S, C, T]
|
||||
with S the number of streams, C the number of channels and T the number of samples.
|
||||
If it is an int, the output will be [C, T].
|
||||
samplerate (int): if provided, will resample on the fly. If None, no resampling will
|
||||
be done. Original sampling rate can be obtained with :method:`samplerate`.
|
||||
channels (int): if 1, will convert to mono. We do not rely on ffmpeg for that
|
||||
as ffmpeg automatically scale by +3dB to conserve volume when playing on speakers.
|
||||
See https://sound.stackexchange.com/a/42710.
|
||||
Our definition of mono is simply the average of the two channels. Any other
|
||||
value will be ignored.
|
||||
"""
|
||||
streams = np.array(range(len(self)))[streams]
|
||||
single = not isinstance(streams, np.ndarray)
|
||||
if single:
|
||||
streams = [streams]
|
||||
|
||||
if duration is None:
|
||||
target_size = None
|
||||
query_duration = None
|
||||
else:
|
||||
target_size = int((samplerate or self.samplerate()) * duration)
|
||||
query_duration = float((target_size + 1) / (samplerate or self.samplerate()))
|
||||
|
||||
with temp_filenames(len(streams)) as filenames:
|
||||
command = ['ffmpeg', '-y']
|
||||
command += ['-loglevel', 'panic']
|
||||
if seek_time:
|
||||
command += ['-ss', str(seek_time)]
|
||||
command += ['-i', str(self.path)]
|
||||
for stream, filename in zip(streams, filenames):
|
||||
command += ['-map', f'0:{self._audio_streams[stream]}']
|
||||
if query_duration is not None:
|
||||
command += ['-t', str(query_duration)]
|
||||
command += ['-threads', '1']
|
||||
command += ['-f', 'f32le']
|
||||
if samplerate is not None:
|
||||
command += ['-ar', str(samplerate)]
|
||||
command += [filename]
|
||||
|
||||
sp.run(command, check=True)
|
||||
wavs = []
|
||||
for filename in filenames:
|
||||
wav = np.fromfile(filename, dtype=np.float32)
|
||||
wav = torch.from_numpy(wav)
|
||||
wav = wav.view(-1, self.channels()).t()
|
||||
if channels is not None:
|
||||
wav = convert_audio_channels(wav, channels)
|
||||
if target_size is not None:
|
||||
wav = wav[..., :target_size]
|
||||
wavs.append(wav)
|
||||
wav = torch.stack(wavs, dim=0)
|
||||
if single:
|
||||
wav = wav[0]
|
||||
return wav
|
||||
|
||||
|
||||
def convert_audio_channels(wav, channels=2):
|
||||
"""Convert audio to the given number of channels."""
|
||||
*shape, src_channels, length = wav.shape
|
||||
if src_channels == channels:
|
||||
pass
|
||||
elif channels == 1:
|
||||
# Case 1:
|
||||
# The caller asked 1-channel audio, but the stream have multiple
|
||||
# channels, downmix all channels.
|
||||
wav = wav.mean(dim=-2, keepdim=True)
|
||||
elif src_channels == 1:
|
||||
# Case 2:
|
||||
# The caller asked for multiple channels, but the input file have
|
||||
# one single channel, replicate the audio over all channels.
|
||||
wav = wav.expand(*shape, channels, length)
|
||||
elif src_channels >= channels:
|
||||
# Case 3:
|
||||
# The caller asked for multiple channels, and the input file have
|
||||
# more channels than requested. In that case return the first channels.
|
||||
wav = wav[..., :channels, :]
|
||||
else:
|
||||
# Case 4: What is a reasonable choice here?
|
||||
raise ValueError('The audio file has less channels than requested but is not mono.')
|
||||
return wav
|
||||
|
||||
|
||||
def convert_audio(wav, from_samplerate, to_samplerate, channels):
|
||||
"""Convert audio from a given samplerate to a target one and target number of channels."""
|
||||
wav = convert_audio_channels(wav, channels)
|
||||
return julius.resample_frac(wav, from_samplerate, to_samplerate)
|
||||
|
||||
|
||||
def i16_pcm(wav):
|
||||
"""Convert audio to 16 bits integer PCM format."""
|
||||
if wav.dtype.is_floating_point:
|
||||
return (wav.clamp_(-1, 1) * (2**15 - 1)).short()
|
||||
else:
|
||||
return wav
|
||||
|
||||
|
||||
def f32_pcm(wav):
|
||||
"""Convert audio to float 32 bits PCM format."""
|
||||
if wav.dtype.is_floating_point:
|
||||
return wav
|
||||
else:
|
||||
return wav.float() / (2**15 - 1)
|
||||
|
||||
|
||||
def as_dtype_pcm(wav, dtype):
|
||||
"""Convert audio to either f32 pcm or i16 pcm depending on the given dtype."""
|
||||
if wav.dtype.is_floating_point:
|
||||
return f32_pcm(wav)
|
||||
else:
|
||||
return i16_pcm(wav)
|
||||
|
||||
|
||||
def encode_mp3(wav, path, samplerate=44100, bitrate=320, quality=2, verbose=False):
|
||||
"""Save given audio as mp3. This should work on all OSes."""
|
||||
C, T = wav.shape
|
||||
wav = i16_pcm(wav)
|
||||
encoder = lameenc.Encoder()
|
||||
encoder.set_bit_rate(bitrate)
|
||||
encoder.set_in_sample_rate(samplerate)
|
||||
encoder.set_channels(C)
|
||||
encoder.set_quality(quality) # 2-highest, 7-fastest
|
||||
if not verbose:
|
||||
encoder.silence()
|
||||
wav = wav.data.cpu()
|
||||
wav = wav.transpose(0, 1).numpy()
|
||||
mp3_data = encoder.encode(wav.tobytes())
|
||||
mp3_data += encoder.flush()
|
||||
with open(path, "wb") as f:
|
||||
f.write(mp3_data)
|
||||
|
||||
|
||||
def prevent_clip(wav, mode='rescale'):
|
||||
"""
|
||||
different strategies for avoiding raw clipping.
|
||||
"""
|
||||
if mode is None or mode == 'none':
|
||||
return wav
|
||||
assert wav.dtype.is_floating_point, "too late for clipping"
|
||||
if mode == 'rescale':
|
||||
wav = wav / max(1.01 * wav.abs().max(), 1)
|
||||
elif mode == 'clamp':
|
||||
wav = wav.clamp(-0.99, 0.99)
|
||||
elif mode == 'tanh':
|
||||
wav = torch.tanh(wav)
|
||||
else:
|
||||
raise ValueError(f"Invalid mode {mode}")
|
||||
return wav
|
||||
|
||||
|
||||
def save_audio(wav: torch.Tensor,
|
||||
path: tp.Union[str, Path],
|
||||
samplerate: int,
|
||||
bitrate: int = 320,
|
||||
clip: tp.Literal["rescale", "clamp", "tanh", "none"] = 'rescale',
|
||||
bits_per_sample: tp.Literal[16, 24, 32] = 16,
|
||||
as_float: bool = False,
|
||||
preset: tp.Literal[2, 3, 4, 5, 6, 7] = 2):
|
||||
"""Save audio file, automatically preventing clipping if necessary
|
||||
based on the given `clip` strategy. If the path ends in `.mp3`, this
|
||||
will save as mp3 with the given `bitrate`. Use `preset` to set mp3 quality:
|
||||
2 for highest quality, 7 for fastest speed
|
||||
"""
|
||||
wav = prevent_clip(wav, mode=clip)
|
||||
path = Path(path)
|
||||
suffix = path.suffix.lower()
|
||||
if suffix == ".mp3":
|
||||
encode_mp3(wav, path, samplerate, bitrate, preset, verbose=True)
|
||||
elif suffix == ".wav":
|
||||
if as_float:
|
||||
bits_per_sample = 32
|
||||
encoding = 'PCM_F'
|
||||
else:
|
||||
encoding = 'PCM_S'
|
||||
ta.save(str(path), wav, sample_rate=samplerate,
|
||||
encoding=encoding, bits_per_sample=bits_per_sample)
|
||||
elif suffix == ".flac":
|
||||
ta.save(str(path), wav, sample_rate=samplerate, bits_per_sample=bits_per_sample)
|
||||
else:
|
||||
raise ValueError(f"Invalid suffix for path: {suffix}")
|
||||
111
demucs/augment.py
Normal file
111
demucs/augment.py
Normal file
@@ -0,0 +1,111 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""Data augmentations.
|
||||
"""
|
||||
|
||||
import random
|
||||
import torch as th
|
||||
from torch import nn
|
||||
|
||||
|
||||
class Shift(nn.Module):
|
||||
"""
|
||||
Randomly shift audio in time by up to `shift` samples.
|
||||
"""
|
||||
def __init__(self, shift=8192, same=False):
|
||||
super().__init__()
|
||||
self.shift = shift
|
||||
self.same = same
|
||||
|
||||
def forward(self, wav):
|
||||
batch, sources, channels, time = wav.size()
|
||||
length = time - self.shift
|
||||
if self.shift > 0:
|
||||
if not self.training:
|
||||
wav = wav[..., :length]
|
||||
else:
|
||||
srcs = 1 if self.same else sources
|
||||
offsets = th.randint(self.shift, [batch, srcs, 1, 1], device=wav.device)
|
||||
offsets = offsets.expand(-1, sources, channels, -1)
|
||||
indexes = th.arange(length, device=wav.device)
|
||||
wav = wav.gather(3, indexes + offsets)
|
||||
return wav
|
||||
|
||||
|
||||
class FlipChannels(nn.Module):
|
||||
"""
|
||||
Flip left-right channels.
|
||||
"""
|
||||
def forward(self, wav):
|
||||
batch, sources, channels, time = wav.size()
|
||||
if self.training and wav.size(2) == 2:
|
||||
left = th.randint(2, (batch, sources, 1, 1), device=wav.device)
|
||||
left = left.expand(-1, -1, -1, time)
|
||||
right = 1 - left
|
||||
wav = th.cat([wav.gather(2, left), wav.gather(2, right)], dim=2)
|
||||
return wav
|
||||
|
||||
|
||||
class FlipSign(nn.Module):
|
||||
"""
|
||||
Random sign flip.
|
||||
"""
|
||||
def forward(self, wav):
|
||||
batch, sources, channels, time = wav.size()
|
||||
if self.training:
|
||||
signs = th.randint(2, (batch, sources, 1, 1), device=wav.device, dtype=th.float32)
|
||||
wav = wav * (2 * signs - 1)
|
||||
return wav
|
||||
|
||||
|
||||
class Remix(nn.Module):
|
||||
"""
|
||||
Shuffle sources to make new mixes.
|
||||
"""
|
||||
def __init__(self, proba=1, group_size=4):
|
||||
"""
|
||||
Shuffle sources within one batch.
|
||||
Each batch is divided into groups of size `group_size` and shuffling is done within
|
||||
each group separatly. This allow to keep the same probability distribution no matter
|
||||
the number of GPUs. Without this grouping, using more GPUs would lead to a higher
|
||||
probability of keeping two sources from the same track together which can impact
|
||||
performance.
|
||||
"""
|
||||
super().__init__()
|
||||
self.proba = proba
|
||||
self.group_size = group_size
|
||||
|
||||
def forward(self, wav):
|
||||
batch, streams, channels, time = wav.size()
|
||||
device = wav.device
|
||||
|
||||
if self.training and random.random() < self.proba:
|
||||
group_size = self.group_size or batch
|
||||
if batch % group_size != 0:
|
||||
raise ValueError(f"Batch size {batch} must be divisible by group size {group_size}")
|
||||
groups = batch // group_size
|
||||
wav = wav.view(groups, group_size, streams, channels, time)
|
||||
permutations = th.argsort(th.rand(groups, group_size, streams, 1, 1, device=device),
|
||||
dim=1)
|
||||
wav = wav.gather(1, permutations.expand(-1, -1, -1, channels, time))
|
||||
wav = wav.view(batch, streams, channels, time)
|
||||
return wav
|
||||
|
||||
|
||||
class Scale(nn.Module):
|
||||
def __init__(self, proba=1., min=0.25, max=1.25):
|
||||
super().__init__()
|
||||
self.proba = proba
|
||||
self.min = min
|
||||
self.max = max
|
||||
|
||||
def forward(self, wav):
|
||||
batch, streams, channels, time = wav.size()
|
||||
device = wav.device
|
||||
if self.training and random.random() < self.proba:
|
||||
scales = th.empty(batch, streams, 1, 1, device=device).uniform_(self.min, self.max)
|
||||
wav *= scales
|
||||
return wav
|
||||
447
demucs/demucs.py
Normal file
447
demucs/demucs.py
Normal file
@@ -0,0 +1,447 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import math
|
||||
import typing as tp
|
||||
|
||||
import julius
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from .states import capture_init
|
||||
from .utils import center_trim, unfold
|
||||
from .transformer import LayerScale
|
||||
|
||||
|
||||
class BLSTM(nn.Module):
|
||||
"""
|
||||
BiLSTM with same hidden units as input dim.
|
||||
If `max_steps` is not None, input will be splitting in overlapping
|
||||
chunks and the LSTM applied separately on each chunk.
|
||||
"""
|
||||
def __init__(self, dim, layers=1, max_steps=None, skip=False):
|
||||
super().__init__()
|
||||
assert max_steps is None or max_steps % 4 == 0
|
||||
self.max_steps = max_steps
|
||||
self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim)
|
||||
self.linear = nn.Linear(2 * dim, dim)
|
||||
self.skip = skip
|
||||
|
||||
def forward(self, x):
|
||||
B, C, T = x.shape
|
||||
y = x
|
||||
framed = False
|
||||
if self.max_steps is not None and T > self.max_steps:
|
||||
width = self.max_steps
|
||||
stride = width // 2
|
||||
frames = unfold(x, width, stride)
|
||||
nframes = frames.shape[2]
|
||||
framed = True
|
||||
x = frames.permute(0, 2, 1, 3).reshape(-1, C, width)
|
||||
|
||||
x = x.permute(2, 0, 1)
|
||||
|
||||
x = self.lstm(x)[0]
|
||||
x = self.linear(x)
|
||||
x = x.permute(1, 2, 0)
|
||||
if framed:
|
||||
out = []
|
||||
frames = x.reshape(B, -1, C, width)
|
||||
limit = stride // 2
|
||||
for k in range(nframes):
|
||||
if k == 0:
|
||||
out.append(frames[:, k, :, :-limit])
|
||||
elif k == nframes - 1:
|
||||
out.append(frames[:, k, :, limit:])
|
||||
else:
|
||||
out.append(frames[:, k, :, limit:-limit])
|
||||
out = torch.cat(out, -1)
|
||||
out = out[..., :T]
|
||||
x = out
|
||||
if self.skip:
|
||||
x = x + y
|
||||
return x
|
||||
|
||||
|
||||
def rescale_conv(conv, reference):
|
||||
"""Rescale initial weight scale. It is unclear why it helps but it certainly does.
|
||||
"""
|
||||
std = conv.weight.std().detach()
|
||||
scale = (std / reference)**0.5
|
||||
conv.weight.data /= scale
|
||||
if conv.bias is not None:
|
||||
conv.bias.data /= scale
|
||||
|
||||
|
||||
def rescale_module(module, reference):
|
||||
for sub in module.modules():
|
||||
if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d, nn.Conv2d, nn.ConvTranspose2d)):
|
||||
rescale_conv(sub, reference)
|
||||
|
||||
|
||||
class DConv(nn.Module):
|
||||
"""
|
||||
New residual branches in each encoder layer.
|
||||
This alternates dilated convolutions, potentially with LSTMs and attention.
|
||||
Also before entering each residual branch, dimension is projected on a smaller subspace,
|
||||
e.g. of dim `channels // compress`.
|
||||
"""
|
||||
def __init__(self, channels: int, compress: float = 4, depth: int = 2, init: float = 1e-4,
|
||||
norm=True, attn=False, heads=4, ndecay=4, lstm=False, gelu=True,
|
||||
kernel=3, dilate=True):
|
||||
"""
|
||||
Args:
|
||||
channels: input/output channels for residual branch.
|
||||
compress: amount of channel compression inside the branch.
|
||||
depth: number of layers in the residual branch. Each layer has its own
|
||||
projection, and potentially LSTM and attention.
|
||||
init: initial scale for LayerNorm.
|
||||
norm: use GroupNorm.
|
||||
attn: use LocalAttention.
|
||||
heads: number of heads for the LocalAttention.
|
||||
ndecay: number of decay controls in the LocalAttention.
|
||||
lstm: use LSTM.
|
||||
gelu: Use GELU activation.
|
||||
kernel: kernel size for the (dilated) convolutions.
|
||||
dilate: if true, use dilation, increasing with the depth.
|
||||
"""
|
||||
|
||||
super().__init__()
|
||||
assert kernel % 2 == 1
|
||||
self.channels = channels
|
||||
self.compress = compress
|
||||
self.depth = abs(depth)
|
||||
dilate = depth > 0
|
||||
|
||||
norm_fn: tp.Callable[[int], nn.Module]
|
||||
norm_fn = lambda d: nn.Identity() # noqa
|
||||
if norm:
|
||||
norm_fn = lambda d: nn.GroupNorm(1, d) # noqa
|
||||
|
||||
hidden = int(channels / compress)
|
||||
|
||||
act: tp.Type[nn.Module]
|
||||
if gelu:
|
||||
act = nn.GELU
|
||||
else:
|
||||
act = nn.ReLU
|
||||
|
||||
self.layers = nn.ModuleList([])
|
||||
for d in range(self.depth):
|
||||
dilation = 2 ** d if dilate else 1
|
||||
padding = dilation * (kernel // 2)
|
||||
mods = [
|
||||
nn.Conv1d(channels, hidden, kernel, dilation=dilation, padding=padding),
|
||||
norm_fn(hidden), act(),
|
||||
nn.Conv1d(hidden, 2 * channels, 1),
|
||||
norm_fn(2 * channels), nn.GLU(1),
|
||||
LayerScale(channels, init),
|
||||
]
|
||||
if attn:
|
||||
mods.insert(3, LocalState(hidden, heads=heads, ndecay=ndecay))
|
||||
if lstm:
|
||||
mods.insert(3, BLSTM(hidden, layers=2, max_steps=200, skip=True))
|
||||
layer = nn.Sequential(*mods)
|
||||
self.layers.append(layer)
|
||||
|
||||
def forward(self, x):
|
||||
for layer in self.layers:
|
||||
x = x + layer(x)
|
||||
return x
|
||||
|
||||
|
||||
class LocalState(nn.Module):
|
||||
"""Local state allows to have attention based only on data (no positional embedding),
|
||||
but while setting a constraint on the time window (e.g. decaying penalty term).
|
||||
|
||||
Also a failed experiments with trying to provide some frequency based attention.
|
||||
"""
|
||||
def __init__(self, channels: int, heads: int = 4, nfreqs: int = 0, ndecay: int = 4):
|
||||
super().__init__()
|
||||
assert channels % heads == 0, (channels, heads)
|
||||
self.heads = heads
|
||||
self.nfreqs = nfreqs
|
||||
self.ndecay = ndecay
|
||||
self.content = nn.Conv1d(channels, channels, 1)
|
||||
self.query = nn.Conv1d(channels, channels, 1)
|
||||
self.key = nn.Conv1d(channels, channels, 1)
|
||||
if nfreqs:
|
||||
self.query_freqs = nn.Conv1d(channels, heads * nfreqs, 1)
|
||||
if ndecay:
|
||||
self.query_decay = nn.Conv1d(channels, heads * ndecay, 1)
|
||||
# Initialize decay close to zero (there is a sigmoid), for maximum initial window.
|
||||
self.query_decay.weight.data *= 0.01
|
||||
assert self.query_decay.bias is not None # stupid type checker
|
||||
self.query_decay.bias.data[:] = -2
|
||||
self.proj = nn.Conv1d(channels + heads * nfreqs, channels, 1)
|
||||
|
||||
def forward(self, x):
|
||||
B, C, T = x.shape
|
||||
heads = self.heads
|
||||
indexes = torch.arange(T, device=x.device, dtype=x.dtype)
|
||||
# left index are keys, right index are queries
|
||||
delta = indexes[:, None] - indexes[None, :]
|
||||
|
||||
queries = self.query(x).view(B, heads, -1, T)
|
||||
keys = self.key(x).view(B, heads, -1, T)
|
||||
# t are keys, s are queries
|
||||
dots = torch.einsum("bhct,bhcs->bhts", keys, queries)
|
||||
dots /= keys.shape[2]**0.5
|
||||
if self.nfreqs:
|
||||
periods = torch.arange(1, self.nfreqs + 1, device=x.device, dtype=x.dtype)
|
||||
freq_kernel = torch.cos(2 * math.pi * delta / periods.view(-1, 1, 1))
|
||||
freq_q = self.query_freqs(x).view(B, heads, -1, T) / self.nfreqs ** 0.5
|
||||
dots += torch.einsum("fts,bhfs->bhts", freq_kernel, freq_q)
|
||||
if self.ndecay:
|
||||
decays = torch.arange(1, self.ndecay + 1, device=x.device, dtype=x.dtype)
|
||||
decay_q = self.query_decay(x).view(B, heads, -1, T)
|
||||
decay_q = torch.sigmoid(decay_q) / 2
|
||||
decay_kernel = - decays.view(-1, 1, 1) * delta.abs() / self.ndecay**0.5
|
||||
dots += torch.einsum("fts,bhfs->bhts", decay_kernel, decay_q)
|
||||
|
||||
# Kill self reference.
|
||||
dots.masked_fill_(torch.eye(T, device=dots.device, dtype=torch.bool), -100)
|
||||
weights = torch.softmax(dots, dim=2)
|
||||
|
||||
content = self.content(x).view(B, heads, -1, T)
|
||||
result = torch.einsum("bhts,bhct->bhcs", weights, content)
|
||||
if self.nfreqs:
|
||||
time_sig = torch.einsum("bhts,fts->bhfs", weights, freq_kernel)
|
||||
result = torch.cat([result, time_sig], 2)
|
||||
result = result.reshape(B, -1, T)
|
||||
return x + self.proj(result)
|
||||
|
||||
|
||||
class Demucs(nn.Module):
|
||||
@capture_init
|
||||
def __init__(self,
|
||||
sources,
|
||||
# Channels
|
||||
audio_channels=2,
|
||||
channels=64,
|
||||
growth=2.,
|
||||
# Main structure
|
||||
depth=6,
|
||||
rewrite=True,
|
||||
lstm_layers=0,
|
||||
# Convolutions
|
||||
kernel_size=8,
|
||||
stride=4,
|
||||
context=1,
|
||||
# Activations
|
||||
gelu=True,
|
||||
glu=True,
|
||||
# Normalization
|
||||
norm_starts=4,
|
||||
norm_groups=4,
|
||||
# DConv residual branch
|
||||
dconv_mode=1,
|
||||
dconv_depth=2,
|
||||
dconv_comp=4,
|
||||
dconv_attn=4,
|
||||
dconv_lstm=4,
|
||||
dconv_init=1e-4,
|
||||
# Pre/post processing
|
||||
normalize=True,
|
||||
resample=True,
|
||||
# Weight init
|
||||
rescale=0.1,
|
||||
# Metadata
|
||||
samplerate=44100,
|
||||
segment=4 * 10):
|
||||
"""
|
||||
Args:
|
||||
sources (list[str]): list of source names
|
||||
audio_channels (int): stereo or mono
|
||||
channels (int): first convolution channels
|
||||
depth (int): number of encoder/decoder layers
|
||||
growth (float): multiply (resp divide) number of channels by that
|
||||
for each layer of the encoder (resp decoder)
|
||||
depth (int): number of layers in the encoder and in the decoder.
|
||||
rewrite (bool): add 1x1 convolution to each layer.
|
||||
lstm_layers (int): number of lstm layers, 0 = no lstm. Deactivated
|
||||
by default, as this is now replaced by the smaller and faster small LSTMs
|
||||
in the DConv branches.
|
||||
kernel_size (int): kernel size for convolutions
|
||||
stride (int): stride for convolutions
|
||||
context (int): kernel size of the convolution in the
|
||||
decoder before the transposed convolution. If > 1,
|
||||
will provide some context from neighboring time steps.
|
||||
gelu: use GELU activation function.
|
||||
glu (bool): use glu instead of ReLU for the 1x1 rewrite conv.
|
||||
norm_starts: layer at which group norm starts being used.
|
||||
decoder layers are numbered in reverse order.
|
||||
norm_groups: number of groups for group norm.
|
||||
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
|
||||
dconv_depth: depth of residual DConv branch.
|
||||
dconv_comp: compression of DConv branch.
|
||||
dconv_attn: adds attention layers in DConv branch starting at this layer.
|
||||
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
|
||||
dconv_init: initial scale for the DConv branch LayerScale.
|
||||
normalize (bool): normalizes the input audio on the fly, and scales back
|
||||
the output by the same amount.
|
||||
resample (bool): upsample x2 the input and downsample /2 the output.
|
||||
rescale (float): rescale initial weights of convolutions
|
||||
to get their standard deviation closer to `rescale`.
|
||||
samplerate (int): stored as meta information for easing
|
||||
future evaluations of the model.
|
||||
segment (float): duration of the chunks of audio to ideally evaluate the model on.
|
||||
This is used by `demucs.apply.apply_model`.
|
||||
"""
|
||||
|
||||
super().__init__()
|
||||
self.audio_channels = audio_channels
|
||||
self.sources = sources
|
||||
self.kernel_size = kernel_size
|
||||
self.context = context
|
||||
self.stride = stride
|
||||
self.depth = depth
|
||||
self.resample = resample
|
||||
self.channels = channels
|
||||
self.normalize = normalize
|
||||
self.samplerate = samplerate
|
||||
self.segment = segment
|
||||
self.encoder = nn.ModuleList()
|
||||
self.decoder = nn.ModuleList()
|
||||
self.skip_scales = nn.ModuleList()
|
||||
|
||||
if glu:
|
||||
activation = nn.GLU(dim=1)
|
||||
ch_scale = 2
|
||||
else:
|
||||
activation = nn.ReLU()
|
||||
ch_scale = 1
|
||||
if gelu:
|
||||
act2 = nn.GELU
|
||||
else:
|
||||
act2 = nn.ReLU
|
||||
|
||||
in_channels = audio_channels
|
||||
padding = 0
|
||||
for index in range(depth):
|
||||
norm_fn = lambda d: nn.Identity() # noqa
|
||||
if index >= norm_starts:
|
||||
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
|
||||
|
||||
encode = []
|
||||
encode += [
|
||||
nn.Conv1d(in_channels, channels, kernel_size, stride),
|
||||
norm_fn(channels),
|
||||
act2(),
|
||||
]
|
||||
attn = index >= dconv_attn
|
||||
lstm = index >= dconv_lstm
|
||||
if dconv_mode & 1:
|
||||
encode += [DConv(channels, depth=dconv_depth, init=dconv_init,
|
||||
compress=dconv_comp, attn=attn, lstm=lstm)]
|
||||
if rewrite:
|
||||
encode += [
|
||||
nn.Conv1d(channels, ch_scale * channels, 1),
|
||||
norm_fn(ch_scale * channels), activation]
|
||||
self.encoder.append(nn.Sequential(*encode))
|
||||
|
||||
decode = []
|
||||
if index > 0:
|
||||
out_channels = in_channels
|
||||
else:
|
||||
out_channels = len(self.sources) * audio_channels
|
||||
if rewrite:
|
||||
decode += [
|
||||
nn.Conv1d(channels, ch_scale * channels, 2 * context + 1, padding=context),
|
||||
norm_fn(ch_scale * channels), activation]
|
||||
if dconv_mode & 2:
|
||||
decode += [DConv(channels, depth=dconv_depth, init=dconv_init,
|
||||
compress=dconv_comp, attn=attn, lstm=lstm)]
|
||||
decode += [nn.ConvTranspose1d(channels, out_channels,
|
||||
kernel_size, stride, padding=padding)]
|
||||
if index > 0:
|
||||
decode += [norm_fn(out_channels), act2()]
|
||||
self.decoder.insert(0, nn.Sequential(*decode))
|
||||
in_channels = channels
|
||||
channels = int(growth * channels)
|
||||
|
||||
channels = in_channels
|
||||
if lstm_layers:
|
||||
self.lstm = BLSTM(channels, lstm_layers)
|
||||
else:
|
||||
self.lstm = None
|
||||
|
||||
if rescale:
|
||||
rescale_module(self, reference=rescale)
|
||||
|
||||
def valid_length(self, length):
|
||||
"""
|
||||
Return the nearest valid length to use with the model so that
|
||||
there is no time steps left over in a convolution, e.g. for all
|
||||
layers, size of the input - kernel_size % stride = 0.
|
||||
|
||||
Note that input are automatically padded if necessary to ensure that the output
|
||||
has the same length as the input.
|
||||
"""
|
||||
if self.resample:
|
||||
length *= 2
|
||||
|
||||
for _ in range(self.depth):
|
||||
length = math.ceil((length - self.kernel_size) / self.stride) + 1
|
||||
length = max(1, length)
|
||||
|
||||
for idx in range(self.depth):
|
||||
length = (length - 1) * self.stride + self.kernel_size
|
||||
|
||||
if self.resample:
|
||||
length = math.ceil(length / 2)
|
||||
return int(length)
|
||||
|
||||
def forward(self, mix):
|
||||
x = mix
|
||||
length = x.shape[-1]
|
||||
|
||||
if self.normalize:
|
||||
mono = mix.mean(dim=1, keepdim=True)
|
||||
mean = mono.mean(dim=-1, keepdim=True)
|
||||
std = mono.std(dim=-1, keepdim=True)
|
||||
x = (x - mean) / (1e-5 + std)
|
||||
else:
|
||||
mean = 0
|
||||
std = 1
|
||||
|
||||
delta = self.valid_length(length) - length
|
||||
x = F.pad(x, (delta // 2, delta - delta // 2))
|
||||
|
||||
if self.resample:
|
||||
x = julius.resample_frac(x, 1, 2)
|
||||
|
||||
saved = []
|
||||
for encode in self.encoder:
|
||||
x = encode(x)
|
||||
saved.append(x)
|
||||
|
||||
if self.lstm:
|
||||
x = self.lstm(x)
|
||||
|
||||
for decode in self.decoder:
|
||||
skip = saved.pop(-1)
|
||||
skip = center_trim(skip, x)
|
||||
x = decode(x + skip)
|
||||
|
||||
if self.resample:
|
||||
x = julius.resample_frac(x, 2, 1)
|
||||
x = x * std + mean
|
||||
x = center_trim(x, length)
|
||||
x = x.view(x.size(0), len(self.sources), self.audio_channels, x.size(-1))
|
||||
return x
|
||||
|
||||
def load_state_dict(self, state, strict=True):
|
||||
# fix a mismatch with previous generation Demucs models.
|
||||
for idx in range(self.depth):
|
||||
for a in ['encoder', 'decoder']:
|
||||
for b in ['bias', 'weight']:
|
||||
new = f'{a}.{idx}.3.{b}'
|
||||
old = f'{a}.{idx}.2.{b}'
|
||||
if old in state and new not in state:
|
||||
state[new] = state.pop(old)
|
||||
super().load_state_dict(state, strict=strict)
|
||||
100
demucs/distrib.py
Normal file
100
demucs/distrib.py
Normal file
@@ -0,0 +1,100 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""Distributed training utilities.
|
||||
"""
|
||||
import logging
|
||||
import pickle
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from torch.utils.data import DataLoader, Subset
|
||||
from torch.nn.parallel.distributed import DistributedDataParallel
|
||||
|
||||
from dora import distrib as dora_distrib
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
rank = 0
|
||||
world_size = 1
|
||||
|
||||
|
||||
def init():
|
||||
global rank, world_size
|
||||
if not torch.distributed.is_initialized():
|
||||
dora_distrib.init()
|
||||
rank = dora_distrib.rank()
|
||||
world_size = dora_distrib.world_size()
|
||||
|
||||
|
||||
def average(metrics, count=1.):
|
||||
if isinstance(metrics, dict):
|
||||
keys, values = zip(*sorted(metrics.items()))
|
||||
values = average(values, count)
|
||||
return dict(zip(keys, values))
|
||||
if world_size == 1:
|
||||
return metrics
|
||||
tensor = torch.tensor(list(metrics) + [1], device='cuda', dtype=torch.float32)
|
||||
tensor *= count
|
||||
torch.distributed.all_reduce(tensor, op=torch.distributed.ReduceOp.SUM)
|
||||
return (tensor[:-1] / tensor[-1]).cpu().numpy().tolist()
|
||||
|
||||
|
||||
def wrap(model):
|
||||
if world_size == 1:
|
||||
return model
|
||||
else:
|
||||
return DistributedDataParallel(
|
||||
model,
|
||||
# find_unused_parameters=True,
|
||||
device_ids=[torch.cuda.current_device()],
|
||||
output_device=torch.cuda.current_device())
|
||||
|
||||
|
||||
def barrier():
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
|
||||
|
||||
def share(obj=None, src=0):
|
||||
if world_size == 1:
|
||||
return obj
|
||||
size = torch.empty(1, device='cuda', dtype=torch.long)
|
||||
if rank == src:
|
||||
dump = pickle.dumps(obj)
|
||||
size[0] = len(dump)
|
||||
torch.distributed.broadcast(size, src=src)
|
||||
# size variable is now set to the length of pickled obj in all processes
|
||||
|
||||
if rank == src:
|
||||
buffer = torch.from_numpy(np.frombuffer(dump, dtype=np.uint8).copy()).cuda()
|
||||
else:
|
||||
buffer = torch.empty(size[0].item(), device='cuda', dtype=torch.uint8)
|
||||
torch.distributed.broadcast(buffer, src=src)
|
||||
# buffer variable is now set to pickled obj in all processes
|
||||
|
||||
if rank != src:
|
||||
obj = pickle.loads(buffer.cpu().numpy().tobytes())
|
||||
logger.debug(f"Shared object of size {len(buffer)}")
|
||||
return obj
|
||||
|
||||
|
||||
def loader(dataset, *args, shuffle=False, klass=DataLoader, **kwargs):
|
||||
"""
|
||||
Create a dataloader properly in case of distributed training.
|
||||
If a gradient is going to be computed you must set `shuffle=True`.
|
||||
"""
|
||||
if world_size == 1:
|
||||
return klass(dataset, *args, shuffle=shuffle, **kwargs)
|
||||
|
||||
if shuffle:
|
||||
# train means we will compute backward, we use DistributedSampler
|
||||
sampler = DistributedSampler(dataset)
|
||||
# We ignore shuffle, DistributedSampler already shuffles
|
||||
return klass(dataset, *args, **kwargs, sampler=sampler)
|
||||
else:
|
||||
# We make a manual shard, as DistributedSampler otherwise replicate some examples
|
||||
dataset = Subset(dataset, list(range(rank, len(dataset), world_size)))
|
||||
return klass(dataset, *args, shuffle=shuffle, **kwargs)
|
||||
66
demucs/ema.py
Normal file
66
demucs/ema.py
Normal file
@@ -0,0 +1,66 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# Inspired from https://github.com/rwightman/pytorch-image-models
|
||||
from contextlib import contextmanager
|
||||
|
||||
import torch
|
||||
|
||||
from .states import swap_state
|
||||
|
||||
|
||||
class ModelEMA:
|
||||
"""
|
||||
Perform EMA on a model. You can switch to the EMA weights temporarily
|
||||
with the `swap` method.
|
||||
|
||||
ema = ModelEMA(model)
|
||||
with ema.swap():
|
||||
# compute valid metrics with averaged model.
|
||||
"""
|
||||
def __init__(self, model, decay=0.9999, unbias=True, device='cpu'):
|
||||
self.decay = decay
|
||||
self.model = model
|
||||
self.state = {}
|
||||
self.count = 0
|
||||
self.device = device
|
||||
self.unbias = unbias
|
||||
|
||||
self._init()
|
||||
|
||||
def _init(self):
|
||||
for key, val in self.model.state_dict().items():
|
||||
if val.dtype != torch.float32:
|
||||
continue
|
||||
device = self.device or val.device
|
||||
if key not in self.state:
|
||||
self.state[key] = val.detach().to(device, copy=True)
|
||||
|
||||
def update(self):
|
||||
if self.unbias:
|
||||
self.count = self.count * self.decay + 1
|
||||
w = 1 / self.count
|
||||
else:
|
||||
w = 1 - self.decay
|
||||
for key, val in self.model.state_dict().items():
|
||||
if val.dtype != torch.float32:
|
||||
continue
|
||||
device = self.device or val.device
|
||||
self.state[key].mul_(1 - w)
|
||||
self.state[key].add_(val.detach().to(device), alpha=w)
|
||||
|
||||
@contextmanager
|
||||
def swap(self):
|
||||
with swap_state(self.model, self.state):
|
||||
yield
|
||||
|
||||
def state_dict(self):
|
||||
return {'state': self.state, 'count': self.count}
|
||||
|
||||
def load_state_dict(self, state):
|
||||
self.count = state['count']
|
||||
for k, v in state['state'].items():
|
||||
self.state[k].copy_(v)
|
||||
174
demucs/evaluate.py
Normal file
174
demucs/evaluate.py
Normal file
@@ -0,0 +1,174 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
"""Test time evaluation, either using the original SDR from [Vincent et al. 2006]
|
||||
or the newest SDR definition from the MDX 2021 competition (this one will
|
||||
be reported as `nsdr` for `new sdr`).
|
||||
"""
|
||||
|
||||
from concurrent import futures
|
||||
import logging
|
||||
|
||||
from dora.log import LogProgress
|
||||
import numpy as np
|
||||
import musdb
|
||||
import museval
|
||||
import torch as th
|
||||
|
||||
from .apply import apply_model
|
||||
from .audio import convert_audio, save_audio
|
||||
from . import distrib
|
||||
from .utils import DummyPoolExecutor
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def new_sdr(references, estimates):
|
||||
"""
|
||||
Compute the SDR according to the MDX challenge definition.
|
||||
Adapted from AIcrowd/music-demixing-challenge-starter-kit (MIT license)
|
||||
"""
|
||||
assert references.dim() == 4
|
||||
assert estimates.dim() == 4
|
||||
delta = 1e-7 # avoid numerical errors
|
||||
num = th.sum(th.square(references), dim=(2, 3))
|
||||
den = th.sum(th.square(references - estimates), dim=(2, 3))
|
||||
num += delta
|
||||
den += delta
|
||||
scores = 10 * th.log10(num / den)
|
||||
return scores
|
||||
|
||||
|
||||
def eval_track(references, estimates, win, hop, compute_sdr=True):
|
||||
references = references.transpose(1, 2).double()
|
||||
estimates = estimates.transpose(1, 2).double()
|
||||
|
||||
new_scores = new_sdr(references.cpu()[None], estimates.cpu()[None])[0]
|
||||
|
||||
if not compute_sdr:
|
||||
return None, new_scores
|
||||
else:
|
||||
references = references.numpy()
|
||||
estimates = estimates.numpy()
|
||||
scores = museval.metrics.bss_eval(
|
||||
references, estimates,
|
||||
compute_permutation=False,
|
||||
window=win,
|
||||
hop=hop,
|
||||
framewise_filters=False,
|
||||
bsseval_sources_version=False)[:-1]
|
||||
return scores, new_scores
|
||||
|
||||
|
||||
def evaluate(solver, compute_sdr=False):
|
||||
"""
|
||||
Evaluate model using museval.
|
||||
compute_sdr=False means using only the MDX definition of the SDR, which
|
||||
is much faster to evaluate.
|
||||
"""
|
||||
|
||||
args = solver.args
|
||||
|
||||
output_dir = solver.folder / "results"
|
||||
output_dir.mkdir(exist_ok=True, parents=True)
|
||||
json_folder = solver.folder / "results/test"
|
||||
json_folder.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
# we load tracks from the original musdb set
|
||||
if args.test.nonhq is None:
|
||||
test_set = musdb.DB(args.dset.musdb, subsets=["test"], is_wav=True)
|
||||
else:
|
||||
test_set = musdb.DB(args.test.nonhq, subsets=["test"], is_wav=False)
|
||||
src_rate = args.dset.musdb_samplerate
|
||||
|
||||
eval_device = 'cpu'
|
||||
|
||||
model = solver.model
|
||||
win = int(1. * model.samplerate)
|
||||
hop = int(1. * model.samplerate)
|
||||
|
||||
indexes = range(distrib.rank, len(test_set), distrib.world_size)
|
||||
indexes = LogProgress(logger, indexes, updates=args.misc.num_prints,
|
||||
name='Eval')
|
||||
pendings = []
|
||||
|
||||
pool = futures.ProcessPoolExecutor if args.test.workers else DummyPoolExecutor
|
||||
with pool(args.test.workers) as pool:
|
||||
for index in indexes:
|
||||
track = test_set.tracks[index]
|
||||
|
||||
mix = th.from_numpy(track.audio).t().float()
|
||||
if mix.dim() == 1:
|
||||
mix = mix[None]
|
||||
mix = mix.to(solver.device)
|
||||
ref = mix.mean(dim=0) # mono mixture
|
||||
mix = (mix - ref.mean()) / ref.std()
|
||||
mix = convert_audio(mix, src_rate, model.samplerate, model.audio_channels)
|
||||
estimates = apply_model(model, mix[None],
|
||||
shifts=args.test.shifts, split=args.test.split,
|
||||
overlap=args.test.overlap)[0]
|
||||
estimates = estimates * ref.std() + ref.mean()
|
||||
estimates = estimates.to(eval_device)
|
||||
|
||||
references = th.stack(
|
||||
[th.from_numpy(track.targets[name].audio).t() for name in model.sources])
|
||||
if references.dim() == 2:
|
||||
references = references[:, None]
|
||||
references = references.to(eval_device)
|
||||
references = convert_audio(references, src_rate,
|
||||
model.samplerate, model.audio_channels)
|
||||
if args.test.save:
|
||||
folder = solver.folder / "wav" / track.name
|
||||
folder.mkdir(exist_ok=True, parents=True)
|
||||
for name, estimate in zip(model.sources, estimates):
|
||||
save_audio(estimate.cpu(), folder / (name + ".mp3"), model.samplerate)
|
||||
|
||||
pendings.append((track.name, pool.submit(
|
||||
eval_track, references, estimates, win=win, hop=hop, compute_sdr=compute_sdr)))
|
||||
|
||||
pendings = LogProgress(logger, pendings, updates=args.misc.num_prints,
|
||||
name='Eval (BSS)')
|
||||
tracks = {}
|
||||
for track_name, pending in pendings:
|
||||
pending = pending.result()
|
||||
scores, nsdrs = pending
|
||||
tracks[track_name] = {}
|
||||
for idx, target in enumerate(model.sources):
|
||||
tracks[track_name][target] = {'nsdr': [float(nsdrs[idx])]}
|
||||
if scores is not None:
|
||||
(sdr, isr, sir, sar) = scores
|
||||
for idx, target in enumerate(model.sources):
|
||||
values = {
|
||||
"SDR": sdr[idx].tolist(),
|
||||
"SIR": sir[idx].tolist(),
|
||||
"ISR": isr[idx].tolist(),
|
||||
"SAR": sar[idx].tolist()
|
||||
}
|
||||
tracks[track_name][target].update(values)
|
||||
|
||||
all_tracks = {}
|
||||
for src in range(distrib.world_size):
|
||||
all_tracks.update(distrib.share(tracks, src))
|
||||
|
||||
result = {}
|
||||
metric_names = next(iter(all_tracks.values()))[model.sources[0]]
|
||||
for metric_name in metric_names:
|
||||
avg = 0
|
||||
avg_of_medians = 0
|
||||
for source in model.sources:
|
||||
medians = [
|
||||
np.nanmedian(all_tracks[track][source][metric_name])
|
||||
for track in all_tracks.keys()]
|
||||
mean = np.mean(medians)
|
||||
median = np.median(medians)
|
||||
result[metric_name.lower() + "_" + source] = mean
|
||||
result[metric_name.lower() + "_med" + "_" + source] = median
|
||||
avg += mean / len(model.sources)
|
||||
avg_of_medians += median / len(model.sources)
|
||||
result[metric_name.lower()] = avg
|
||||
result[metric_name.lower() + "_med"] = avg_of_medians
|
||||
return result
|
||||
0
demucs/grids/__init__.py
Normal file
0
demucs/grids/__init__.py
Normal file
64
demucs/grids/_explorers.py
Normal file
64
demucs/grids/_explorers.py
Normal file
@@ -0,0 +1,64 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
from dora import Explorer
|
||||
import treetable as tt
|
||||
|
||||
|
||||
class MyExplorer(Explorer):
|
||||
test_metrics = ['nsdr', 'sdr_med']
|
||||
|
||||
def get_grid_metrics(self):
|
||||
"""Return the metrics that should be displayed in the tracking table.
|
||||
"""
|
||||
return [
|
||||
tt.group("train", [
|
||||
tt.leaf("epoch"),
|
||||
tt.leaf("reco", ".3f"),
|
||||
], align=">"),
|
||||
tt.group("valid", [
|
||||
tt.leaf("penalty", ".1f"),
|
||||
tt.leaf("ms", ".1f"),
|
||||
tt.leaf("reco", ".2%"),
|
||||
tt.leaf("breco", ".2%"),
|
||||
tt.leaf("b_nsdr", ".2f"),
|
||||
# tt.leaf("b_nsdr_drums", ".2f"),
|
||||
# tt.leaf("b_nsdr_bass", ".2f"),
|
||||
# tt.leaf("b_nsdr_other", ".2f"),
|
||||
# tt.leaf("b_nsdr_vocals", ".2f"),
|
||||
], align=">"),
|
||||
tt.group("test", [
|
||||
tt.leaf(name, ".2f")
|
||||
for name in self.test_metrics
|
||||
], align=">")
|
||||
]
|
||||
|
||||
def process_history(self, history):
|
||||
train = {
|
||||
'epoch': len(history),
|
||||
}
|
||||
valid = {}
|
||||
test = {}
|
||||
best_v_main = float('inf')
|
||||
breco = float('inf')
|
||||
for metrics in history:
|
||||
train.update(metrics['train'])
|
||||
valid.update(metrics['valid'])
|
||||
if 'main' in metrics['valid']:
|
||||
best_v_main = min(best_v_main, metrics['valid']['main']['loss'])
|
||||
valid['bmain'] = best_v_main
|
||||
valid['breco'] = min(breco, metrics['valid']['reco'])
|
||||
breco = valid['breco']
|
||||
if (metrics['valid']['loss'] == metrics['valid']['best'] or
|
||||
metrics['valid'].get('nsdr') == metrics['valid']['best']):
|
||||
for k, v in metrics['valid'].items():
|
||||
if k.startswith('reco_'):
|
||||
valid['b_' + k[len('reco_'):]] = v
|
||||
if k.startswith('nsdr'):
|
||||
valid[f'b_{k}'] = v
|
||||
if 'test' in metrics:
|
||||
test.update(metrics['test'])
|
||||
metrics = history[-1]
|
||||
return {"train": train, "valid": valid, "test": test}
|
||||
33
demucs/grids/mdx.py
Normal file
33
demucs/grids/mdx.py
Normal file
@@ -0,0 +1,33 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""
|
||||
Main training for the Track A MDX models.
|
||||
"""
|
||||
|
||||
from ._explorers import MyExplorer
|
||||
from ..train import main
|
||||
|
||||
|
||||
TRACK_A = ['0d19c1c6', '7ecf8ec1', 'c511e2ab', '7d865c68']
|
||||
|
||||
|
||||
@MyExplorer
|
||||
def explorer(launcher):
|
||||
launcher.slurm_(
|
||||
gpus=8,
|
||||
time=3 * 24 * 60,
|
||||
partition='learnlab')
|
||||
|
||||
# Reproduce results from MDX competition Track A
|
||||
# This trains the first round of models. Once this is trained,
|
||||
# you will need to schedule `mdx_refine`.
|
||||
for sig in TRACK_A:
|
||||
xp = main.get_xp_from_sig(sig)
|
||||
parent = xp.cfg.continue_from
|
||||
xp = main.get_xp_from_sig(parent)
|
||||
launcher(xp.argv)
|
||||
launcher(xp.argv, {'quant.diffq': 1e-4})
|
||||
launcher(xp.argv, {'quant.diffq': 3e-4})
|
||||
36
demucs/grids/mdx_extra.py
Normal file
36
demucs/grids/mdx_extra.py
Normal file
@@ -0,0 +1,36 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""
|
||||
Main training for the Track A MDX models.
|
||||
"""
|
||||
|
||||
from ._explorers import MyExplorer
|
||||
from ..train import main
|
||||
|
||||
TRACK_B = ['e51eebcc', 'a1d90b5c', '5d2d6c55', 'cfa93e08']
|
||||
|
||||
|
||||
@MyExplorer
|
||||
def explorer(launcher):
|
||||
launcher.slurm_(
|
||||
gpus=8,
|
||||
time=3 * 24 * 60,
|
||||
partition='learnlab')
|
||||
|
||||
# Reproduce results from MDX competition Track A
|
||||
# This trains the first round of models. Once this is trained,
|
||||
# you will need to schedule `mdx_refine`.
|
||||
for sig in TRACK_B:
|
||||
while sig is not None:
|
||||
xp = main.get_xp_from_sig(sig)
|
||||
sig = xp.cfg.continue_from
|
||||
|
||||
for dset in ['extra44', 'extra_test']:
|
||||
sub = launcher.bind(xp.argv, dset=dset)
|
||||
sub()
|
||||
if dset == 'extra_test':
|
||||
sub({'quant.diffq': 1e-4})
|
||||
sub({'quant.diffq': 3e-4})
|
||||
34
demucs/grids/mdx_refine.py
Normal file
34
demucs/grids/mdx_refine.py
Normal file
@@ -0,0 +1,34 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""
|
||||
Main training for the Track A MDX models.
|
||||
"""
|
||||
|
||||
from ._explorers import MyExplorer
|
||||
from .mdx import TRACK_A
|
||||
from ..train import main
|
||||
|
||||
|
||||
@MyExplorer
|
||||
def explorer(launcher):
|
||||
launcher.slurm_(
|
||||
gpus=8,
|
||||
time=3 * 24 * 60,
|
||||
partition='learnlab')
|
||||
|
||||
# Reproduce results from MDX competition Track A
|
||||
# WARNING: all the experiments in the `mdx` grid must have completed.
|
||||
for sig in TRACK_A:
|
||||
xp = main.get_xp_from_sig(sig)
|
||||
launcher(xp.argv)
|
||||
for diffq in [1e-4, 3e-4]:
|
||||
xp_src = main.get_xp_from_sig(xp.cfg.continue_from)
|
||||
q_argv = [f'quant.diffq={diffq}']
|
||||
actual_src = main.get_xp(xp_src.argv + q_argv)
|
||||
actual_src.link.load()
|
||||
assert len(actual_src.link.history) == actual_src.cfg.epochs
|
||||
argv = xp.argv + q_argv + [f'continue_from="{actual_src.sig}"']
|
||||
launcher(argv)
|
||||
69
demucs/grids/mmi.py
Normal file
69
demucs/grids/mmi.py
Normal file
@@ -0,0 +1,69 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from ._explorers import MyExplorer
|
||||
from dora import Launcher
|
||||
|
||||
|
||||
@MyExplorer
|
||||
def explorer(launcher: Launcher):
|
||||
launcher.slurm_(gpus=8, time=3 * 24 * 60, partition="devlab,learnlab,learnfair") # 3 days
|
||||
|
||||
sub = launcher.bind_(
|
||||
{
|
||||
"dset": "extra_mmi_goodclean",
|
||||
"test.shifts": 0,
|
||||
"model": "htdemucs",
|
||||
"htdemucs.dconv_mode": 3,
|
||||
"htdemucs.depth": 4,
|
||||
"htdemucs.t_dropout": 0.02,
|
||||
"htdemucs.t_layers": 5,
|
||||
"max_batches": 800,
|
||||
"ema.epoch": [0.9, 0.95],
|
||||
"ema.batch": [0.9995, 0.9999],
|
||||
"dset.segment": 10,
|
||||
"batch_size": 32,
|
||||
}
|
||||
)
|
||||
sub({"model": "hdemucs"})
|
||||
sub({"model": "hdemucs", "dset": "extra44"})
|
||||
sub({"model": "hdemucs", "dset": "musdb44"})
|
||||
|
||||
sparse = {
|
||||
'batch_size': 3 * 8,
|
||||
'augment.remix.group_size': 3,
|
||||
'htdemucs.t_auto_sparsity': True,
|
||||
'htdemucs.t_sparse_self_attn': True,
|
||||
'htdemucs.t_sparse_cross_attn': True,
|
||||
'htdemucs.t_sparsity': 0.9,
|
||||
"htdemucs.t_layers": 7
|
||||
}
|
||||
|
||||
with launcher.job_array():
|
||||
for transf_layers in [5, 7]:
|
||||
for bottom_channels in [0, 512]:
|
||||
sub = launcher.bind({
|
||||
"htdemucs.t_layers": transf_layers,
|
||||
"htdemucs.bottom_channels": bottom_channels,
|
||||
})
|
||||
if bottom_channels == 0 and transf_layers == 5:
|
||||
sub({"augment.remix.proba": 0.0})
|
||||
sub({
|
||||
"augment.repitch.proba": 0.0,
|
||||
# when doing repitching, we trim the outut to align on the
|
||||
# highest change of BPM. When removing repitching,
|
||||
# we simulate it here to ensure the training context is the same.
|
||||
# Another second is lost for all experiments due to the random
|
||||
# shift augmentation.
|
||||
"dset.segment": 10 * 0.88})
|
||||
elif bottom_channels == 512 and transf_layers == 5:
|
||||
sub(dset="musdb44")
|
||||
sub(dset="extra44")
|
||||
# Sparse kernel XP, currently not released as kernels are still experimental.
|
||||
sub(sparse, {'dset.segment': 15, "htdemucs.t_layers": 7})
|
||||
|
||||
for duration in [5, 10, 15]:
|
||||
sub({"dset.segment": duration})
|
||||
55
demucs/grids/mmi_ft.py
Normal file
55
demucs/grids/mmi_ft.py
Normal file
@@ -0,0 +1,55 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from ._explorers import MyExplorer
|
||||
from dora import Launcher
|
||||
from demucs import train
|
||||
|
||||
|
||||
def get_sub(launcher, sig):
|
||||
xp = train.main.get_xp_from_sig(sig)
|
||||
sub = launcher.bind(xp.argv)
|
||||
sub()
|
||||
sub.bind_({
|
||||
'continue_from': sig,
|
||||
'continue_best': True})
|
||||
return sub
|
||||
|
||||
|
||||
@MyExplorer
|
||||
def explorer(launcher: Launcher):
|
||||
launcher.slurm_(gpus=4, time=3 * 24 * 60, partition="devlab,learnlab,learnfair") # 3 days
|
||||
ft = {
|
||||
'optim.lr': 1e-4,
|
||||
'augment.remix.proba': 0,
|
||||
'augment.scale.proba': 0,
|
||||
'augment.shift_same': True,
|
||||
'htdemucs.t_weight_decay': 0.05,
|
||||
'batch_size': 8,
|
||||
'optim.clip_grad': 5,
|
||||
'optim.optim': 'adamw',
|
||||
'epochs': 50,
|
||||
'dset.wav2_valid': True,
|
||||
'ema.epoch': [], # let's make valid a bit faster
|
||||
}
|
||||
with launcher.job_array():
|
||||
for sig in ['2899e11a']:
|
||||
sub = get_sub(launcher, sig)
|
||||
sub.bind_(ft)
|
||||
for segment in [15, 18]:
|
||||
for source in range(4):
|
||||
w = [0] * 4
|
||||
w[source] = 1
|
||||
sub({'weights': w, 'dset.segment': segment})
|
||||
|
||||
for sig in ['955717e8']:
|
||||
sub = get_sub(launcher, sig)
|
||||
sub.bind_(ft)
|
||||
for segment in [10, 15]:
|
||||
for source in range(4):
|
||||
w = [0] * 4
|
||||
w[source] = 1
|
||||
sub({'weights': w, 'dset.segment': segment})
|
||||
50
demucs/grids/repro.py
Normal file
50
demucs/grids/repro.py
Normal file
@@ -0,0 +1,50 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""
|
||||
Easier training for reproducibility
|
||||
"""
|
||||
|
||||
from ._explorers import MyExplorer
|
||||
|
||||
|
||||
@MyExplorer
|
||||
def explorer(launcher):
|
||||
launcher.slurm_(
|
||||
gpus=8,
|
||||
time=3 * 24 * 60,
|
||||
partition='devlab,learnlab')
|
||||
|
||||
launcher.bind_({'ema.epoch': [0.9, 0.95]})
|
||||
launcher.bind_({'ema.batch': [0.9995, 0.9999]})
|
||||
launcher.bind_({'epochs': 600})
|
||||
|
||||
base = {'model': 'demucs', 'demucs.dconv_mode': 0, 'demucs.gelu': False,
|
||||
'demucs.lstm_layers': 2}
|
||||
newt = {'model': 'demucs', 'demucs.normalize': True}
|
||||
hdem = {'model': 'hdemucs'}
|
||||
svd = {'svd.penalty': 1e-5, 'svd': 'base2'}
|
||||
|
||||
with launcher.job_array():
|
||||
for model in [base, newt, hdem]:
|
||||
sub = launcher.bind(model)
|
||||
if model is base:
|
||||
# Training the v2 Demucs on MusDB HQ
|
||||
sub(epochs=360)
|
||||
continue
|
||||
|
||||
# those two will be used in the repro_mdx_a bag of models.
|
||||
sub(svd)
|
||||
sub(svd, seed=43)
|
||||
if model == newt:
|
||||
# Ablation study
|
||||
sub()
|
||||
abl = sub.bind(svd)
|
||||
abl({'ema.epoch': [], 'ema.batch': []})
|
||||
abl({'demucs.dconv_lstm': 10})
|
||||
abl({'demucs.dconv_attn': 10})
|
||||
abl({'demucs.dconv_attn': 10, 'demucs.dconv_lstm': 10, 'demucs.lstm_layers': 2})
|
||||
abl({'demucs.dconv_mode': 0})
|
||||
abl({'demucs.gelu': False})
|
||||
46
demucs/grids/repro_ft.py
Normal file
46
demucs/grids/repro_ft.py
Normal file
@@ -0,0 +1,46 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""
|
||||
Fine tuning experiments
|
||||
"""
|
||||
|
||||
from ._explorers import MyExplorer
|
||||
from ..train import main
|
||||
|
||||
|
||||
@MyExplorer
|
||||
def explorer(launcher):
|
||||
launcher.slurm_(
|
||||
gpus=8,
|
||||
time=300,
|
||||
partition='devlab,learnlab')
|
||||
|
||||
# Mus
|
||||
launcher.slurm_(constraint='volta32gb')
|
||||
|
||||
grid = "repro"
|
||||
folder = main.dora.dir / "grids" / grid
|
||||
|
||||
for sig in folder.iterdir():
|
||||
if not sig.is_symlink():
|
||||
continue
|
||||
xp = main.get_xp_from_sig(sig)
|
||||
xp.link.load()
|
||||
if len(xp.link.history) != xp.cfg.epochs:
|
||||
continue
|
||||
sub = launcher.bind(xp.argv, [f'continue_from="{xp.sig}"'])
|
||||
sub.bind_({'ema.epoch': [0.9, 0.95], 'ema.batch': [0.9995, 0.9999]})
|
||||
sub.bind_({'test.every': 1, 'test.sdr': True, 'epochs': 4})
|
||||
sub.bind_({'dset.segment': 28, 'dset.shift': 2})
|
||||
sub.bind_({'batch_size': 32})
|
||||
auto = {'dset': 'auto_mus'}
|
||||
auto.update({'augment.remix.proba': 0, 'augment.scale.proba': 0,
|
||||
'augment.shift_same': True})
|
||||
sub.bind_(auto)
|
||||
sub.bind_({'batch_size': 16})
|
||||
sub.bind_({'optim.lr': 1e-4})
|
||||
sub.bind_({'model_segment': 44})
|
||||
sub()
|
||||
19
demucs/grids/sdx23.py
Normal file
19
demucs/grids/sdx23.py
Normal file
@@ -0,0 +1,19 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from ._explorers import MyExplorer
|
||||
from dora import Launcher
|
||||
|
||||
|
||||
@MyExplorer
|
||||
def explorer(launcher: Launcher):
|
||||
launcher.slurm_(gpus=8, time=3 * 24 * 60, partition="speechgpt,learnfair",
|
||||
mem_per_gpu=None, constraint='')
|
||||
launcher.bind_({"dset.use_musdb": False})
|
||||
|
||||
with launcher.job_array():
|
||||
launcher(dset='sdx23_bleeding')
|
||||
launcher(dset='sdx23_labelnoise')
|
||||
794
demucs/hdemucs.py
Normal file
794
demucs/hdemucs.py
Normal file
@@ -0,0 +1,794 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""
|
||||
This code contains the spectrogram and Hybrid version of Demucs.
|
||||
"""
|
||||
from copy import deepcopy
|
||||
import math
|
||||
import typing as tp
|
||||
|
||||
from openunmix.filtering import wiener
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from .demucs import DConv, rescale_module
|
||||
from .states import capture_init
|
||||
from .spec import spectro, ispectro
|
||||
|
||||
|
||||
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'constant', value: float = 0.):
|
||||
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
|
||||
If this is the case, we insert extra 0 padding to the right before the reflection happen."""
|
||||
x0 = x
|
||||
length = x.shape[-1]
|
||||
padding_left, padding_right = paddings
|
||||
if mode == 'reflect':
|
||||
max_pad = max(padding_left, padding_right)
|
||||
if length <= max_pad:
|
||||
extra_pad = max_pad - length + 1
|
||||
extra_pad_right = min(padding_right, extra_pad)
|
||||
extra_pad_left = extra_pad - extra_pad_right
|
||||
paddings = (padding_left - extra_pad_left, padding_right - extra_pad_right)
|
||||
x = F.pad(x, (extra_pad_left, extra_pad_right))
|
||||
out = F.pad(x, paddings, mode, value)
|
||||
assert out.shape[-1] == length + padding_left + padding_right
|
||||
assert (out[..., padding_left: padding_left + length] == x0).all()
|
||||
return out
|
||||
|
||||
|
||||
class ScaledEmbedding(nn.Module):
|
||||
"""
|
||||
Boost learning rate for embeddings (with `scale`).
|
||||
Also, can make embeddings continuous with `smooth`.
|
||||
"""
|
||||
def __init__(self, num_embeddings: int, embedding_dim: int,
|
||||
scale: float = 10., smooth=False):
|
||||
super().__init__()
|
||||
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
|
||||
if smooth:
|
||||
weight = torch.cumsum(self.embedding.weight.data, dim=0)
|
||||
# when summing gaussian, overscale raises as sqrt(n), so we nornalize by that.
|
||||
weight = weight / torch.arange(1, num_embeddings + 1).to(weight).sqrt()[:, None]
|
||||
self.embedding.weight.data[:] = weight
|
||||
self.embedding.weight.data /= scale
|
||||
self.scale = scale
|
||||
|
||||
@property
|
||||
def weight(self):
|
||||
return self.embedding.weight * self.scale
|
||||
|
||||
def forward(self, x):
|
||||
out = self.embedding(x) * self.scale
|
||||
return out
|
||||
|
||||
|
||||
class HEncLayer(nn.Module):
|
||||
def __init__(self, chin, chout, kernel_size=8, stride=4, norm_groups=1, empty=False,
|
||||
freq=True, dconv=True, norm=True, context=0, dconv_kw={}, pad=True,
|
||||
rewrite=True):
|
||||
"""Encoder layer. This used both by the time and the frequency branch.
|
||||
|
||||
Args:
|
||||
chin: number of input channels.
|
||||
chout: number of output channels.
|
||||
norm_groups: number of groups for group norm.
|
||||
empty: used to make a layer with just the first conv. this is used
|
||||
before merging the time and freq. branches.
|
||||
freq: this is acting on frequencies.
|
||||
dconv: insert DConv residual branches.
|
||||
norm: use GroupNorm.
|
||||
context: context size for the 1x1 conv.
|
||||
dconv_kw: list of kwargs for the DConv class.
|
||||
pad: pad the input. Padding is done so that the output size is
|
||||
always the input size / stride.
|
||||
rewrite: add 1x1 conv at the end of the layer.
|
||||
"""
|
||||
super().__init__()
|
||||
norm_fn = lambda d: nn.Identity() # noqa
|
||||
if norm:
|
||||
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
|
||||
if pad:
|
||||
pad = kernel_size // 4
|
||||
else:
|
||||
pad = 0
|
||||
klass = nn.Conv1d
|
||||
self.freq = freq
|
||||
self.kernel_size = kernel_size
|
||||
self.stride = stride
|
||||
self.empty = empty
|
||||
self.norm = norm
|
||||
self.pad = pad
|
||||
if freq:
|
||||
kernel_size = [kernel_size, 1]
|
||||
stride = [stride, 1]
|
||||
pad = [pad, 0]
|
||||
klass = nn.Conv2d
|
||||
self.conv = klass(chin, chout, kernel_size, stride, pad)
|
||||
if self.empty:
|
||||
return
|
||||
self.norm1 = norm_fn(chout)
|
||||
self.rewrite = None
|
||||
if rewrite:
|
||||
self.rewrite = klass(chout, 2 * chout, 1 + 2 * context, 1, context)
|
||||
self.norm2 = norm_fn(2 * chout)
|
||||
|
||||
self.dconv = None
|
||||
if dconv:
|
||||
self.dconv = DConv(chout, **dconv_kw)
|
||||
|
||||
def forward(self, x, inject=None):
|
||||
"""
|
||||
`inject` is used to inject the result from the time branch into the frequency branch,
|
||||
when both have the same stride.
|
||||
"""
|
||||
if not self.freq and x.dim() == 4:
|
||||
B, C, Fr, T = x.shape
|
||||
x = x.view(B, -1, T)
|
||||
|
||||
if not self.freq:
|
||||
le = x.shape[-1]
|
||||
if not le % self.stride == 0:
|
||||
x = F.pad(x, (0, self.stride - (le % self.stride)))
|
||||
y = self.conv(x)
|
||||
if self.empty:
|
||||
return y
|
||||
if inject is not None:
|
||||
assert inject.shape[-1] == y.shape[-1], (inject.shape, y.shape)
|
||||
if inject.dim() == 3 and y.dim() == 4:
|
||||
inject = inject[:, :, None]
|
||||
y = y + inject
|
||||
y = F.gelu(self.norm1(y))
|
||||
if self.dconv:
|
||||
if self.freq:
|
||||
B, C, Fr, T = y.shape
|
||||
y = y.permute(0, 2, 1, 3).reshape(-1, C, T)
|
||||
y = self.dconv(y)
|
||||
if self.freq:
|
||||
y = y.view(B, Fr, C, T).permute(0, 2, 1, 3)
|
||||
if self.rewrite:
|
||||
z = self.norm2(self.rewrite(y))
|
||||
z = F.glu(z, dim=1)
|
||||
else:
|
||||
z = y
|
||||
return z
|
||||
|
||||
|
||||
class MultiWrap(nn.Module):
|
||||
"""
|
||||
Takes one layer and replicate it N times. each replica will act
|
||||
on a frequency band. All is done so that if the N replica have the same weights,
|
||||
then this is exactly equivalent to applying the original module on all frequencies.
|
||||
|
||||
This is a bit over-engineered to avoid edge artifacts when splitting
|
||||
the frequency bands, but it is possible the naive implementation would work as well...
|
||||
"""
|
||||
def __init__(self, layer, split_ratios):
|
||||
"""
|
||||
Args:
|
||||
layer: module to clone, must be either HEncLayer or HDecLayer.
|
||||
split_ratios: list of float indicating which ratio to keep for each band.
|
||||
"""
|
||||
super().__init__()
|
||||
self.split_ratios = split_ratios
|
||||
self.layers = nn.ModuleList()
|
||||
self.conv = isinstance(layer, HEncLayer)
|
||||
assert not layer.norm
|
||||
assert layer.freq
|
||||
assert layer.pad
|
||||
if not self.conv:
|
||||
assert not layer.context_freq
|
||||
for k in range(len(split_ratios) + 1):
|
||||
lay = deepcopy(layer)
|
||||
if self.conv:
|
||||
lay.conv.padding = (0, 0)
|
||||
else:
|
||||
lay.pad = False
|
||||
for m in lay.modules():
|
||||
if hasattr(m, 'reset_parameters'):
|
||||
m.reset_parameters()
|
||||
self.layers.append(lay)
|
||||
|
||||
def forward(self, x, skip=None, length=None):
|
||||
B, C, Fr, T = x.shape
|
||||
|
||||
ratios = list(self.split_ratios) + [1]
|
||||
start = 0
|
||||
outs = []
|
||||
for ratio, layer in zip(ratios, self.layers):
|
||||
if self.conv:
|
||||
pad = layer.kernel_size // 4
|
||||
if ratio == 1:
|
||||
limit = Fr
|
||||
frames = -1
|
||||
else:
|
||||
limit = int(round(Fr * ratio))
|
||||
le = limit - start
|
||||
if start == 0:
|
||||
le += pad
|
||||
frames = round((le - layer.kernel_size) / layer.stride + 1)
|
||||
limit = start + (frames - 1) * layer.stride + layer.kernel_size
|
||||
if start == 0:
|
||||
limit -= pad
|
||||
assert limit - start > 0, (limit, start)
|
||||
assert limit <= Fr, (limit, Fr)
|
||||
y = x[:, :, start:limit, :]
|
||||
if start == 0:
|
||||
y = F.pad(y, (0, 0, pad, 0))
|
||||
if ratio == 1:
|
||||
y = F.pad(y, (0, 0, 0, pad))
|
||||
outs.append(layer(y))
|
||||
start = limit - layer.kernel_size + layer.stride
|
||||
else:
|
||||
if ratio == 1:
|
||||
limit = Fr
|
||||
else:
|
||||
limit = int(round(Fr * ratio))
|
||||
last = layer.last
|
||||
layer.last = True
|
||||
|
||||
y = x[:, :, start:limit]
|
||||
s = skip[:, :, start:limit]
|
||||
out, _ = layer(y, s, None)
|
||||
if outs:
|
||||
outs[-1][:, :, -layer.stride:] += (
|
||||
out[:, :, :layer.stride] - layer.conv_tr.bias.view(1, -1, 1, 1))
|
||||
out = out[:, :, layer.stride:]
|
||||
if ratio == 1:
|
||||
out = out[:, :, :-layer.stride // 2, :]
|
||||
if start == 0:
|
||||
out = out[:, :, layer.stride // 2:, :]
|
||||
outs.append(out)
|
||||
layer.last = last
|
||||
start = limit
|
||||
out = torch.cat(outs, dim=2)
|
||||
if not self.conv and not last:
|
||||
out = F.gelu(out)
|
||||
if self.conv:
|
||||
return out
|
||||
else:
|
||||
return out, None
|
||||
|
||||
|
||||
class HDecLayer(nn.Module):
|
||||
def __init__(self, chin, chout, last=False, kernel_size=8, stride=4, norm_groups=1, empty=False,
|
||||
freq=True, dconv=True, norm=True, context=1, dconv_kw={}, pad=True,
|
||||
context_freq=True, rewrite=True):
|
||||
"""
|
||||
Same as HEncLayer but for decoder. See `HEncLayer` for documentation.
|
||||
"""
|
||||
super().__init__()
|
||||
norm_fn = lambda d: nn.Identity() # noqa
|
||||
if norm:
|
||||
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
|
||||
if pad:
|
||||
pad = kernel_size // 4
|
||||
else:
|
||||
pad = 0
|
||||
self.pad = pad
|
||||
self.last = last
|
||||
self.freq = freq
|
||||
self.chin = chin
|
||||
self.empty = empty
|
||||
self.stride = stride
|
||||
self.kernel_size = kernel_size
|
||||
self.norm = norm
|
||||
self.context_freq = context_freq
|
||||
klass = nn.Conv1d
|
||||
klass_tr = nn.ConvTranspose1d
|
||||
if freq:
|
||||
kernel_size = [kernel_size, 1]
|
||||
stride = [stride, 1]
|
||||
klass = nn.Conv2d
|
||||
klass_tr = nn.ConvTranspose2d
|
||||
self.conv_tr = klass_tr(chin, chout, kernel_size, stride)
|
||||
self.norm2 = norm_fn(chout)
|
||||
if self.empty:
|
||||
return
|
||||
self.rewrite = None
|
||||
if rewrite:
|
||||
if context_freq:
|
||||
self.rewrite = klass(chin, 2 * chin, 1 + 2 * context, 1, context)
|
||||
else:
|
||||
self.rewrite = klass(chin, 2 * chin, [1, 1 + 2 * context], 1,
|
||||
[0, context])
|
||||
self.norm1 = norm_fn(2 * chin)
|
||||
|
||||
self.dconv = None
|
||||
if dconv:
|
||||
self.dconv = DConv(chin, **dconv_kw)
|
||||
|
||||
def forward(self, x, skip, length):
|
||||
if self.freq and x.dim() == 3:
|
||||
B, C, T = x.shape
|
||||
x = x.view(B, self.chin, -1, T)
|
||||
|
||||
if not self.empty:
|
||||
x = x + skip
|
||||
|
||||
if self.rewrite:
|
||||
y = F.glu(self.norm1(self.rewrite(x)), dim=1)
|
||||
else:
|
||||
y = x
|
||||
if self.dconv:
|
||||
if self.freq:
|
||||
B, C, Fr, T = y.shape
|
||||
y = y.permute(0, 2, 1, 3).reshape(-1, C, T)
|
||||
y = self.dconv(y)
|
||||
if self.freq:
|
||||
y = y.view(B, Fr, C, T).permute(0, 2, 1, 3)
|
||||
else:
|
||||
y = x
|
||||
assert skip is None
|
||||
z = self.norm2(self.conv_tr(y))
|
||||
if self.freq:
|
||||
if self.pad:
|
||||
z = z[..., self.pad:-self.pad, :]
|
||||
else:
|
||||
z = z[..., self.pad:self.pad + length]
|
||||
assert z.shape[-1] == length, (z.shape[-1], length)
|
||||
if not self.last:
|
||||
z = F.gelu(z)
|
||||
return z, y
|
||||
|
||||
|
||||
class HDemucs(nn.Module):
|
||||
"""
|
||||
Spectrogram and hybrid Demucs model.
|
||||
The spectrogram model has the same structure as Demucs, except the first few layers are over the
|
||||
frequency axis, until there is only 1 frequency, and then it moves to time convolutions.
|
||||
Frequency layers can still access information across time steps thanks to the DConv residual.
|
||||
|
||||
Hybrid model have a parallel time branch. At some layer, the time branch has the same stride
|
||||
as the frequency branch and then the two are combined. The opposite happens in the decoder.
|
||||
|
||||
Models can either use naive iSTFT from masking, Wiener filtering ([Ulhih et al. 2017]),
|
||||
or complex as channels (CaC) [Choi et al. 2020]. Wiener filtering is based on
|
||||
Open Unmix implementation [Stoter et al. 2019].
|
||||
|
||||
The loss is always on the temporal domain, by backpropagating through the above
|
||||
output methods and iSTFT. This allows to define hybrid models nicely. However, this breaks
|
||||
a bit Wiener filtering, as doing more iteration at test time will change the spectrogram
|
||||
contribution, without changing the one from the waveform, which will lead to worse performance.
|
||||
I tried using the residual option in OpenUnmix Wiener implementation, but it didn't improve.
|
||||
CaC on the other hand provides similar performance for hybrid, and works naturally with
|
||||
hybrid models.
|
||||
|
||||
This model also uses frequency embeddings are used to improve efficiency on convolutions
|
||||
over the freq. axis, following [Isik et al. 2020] (https://arxiv.org/pdf/2008.04470.pdf).
|
||||
|
||||
Unlike classic Demucs, there is no resampling here, and normalization is always applied.
|
||||
"""
|
||||
@capture_init
|
||||
def __init__(self,
|
||||
sources,
|
||||
# Channels
|
||||
audio_channels=2,
|
||||
channels=48,
|
||||
channels_time=None,
|
||||
growth=2,
|
||||
# STFT
|
||||
nfft=4096,
|
||||
wiener_iters=0,
|
||||
end_iters=0,
|
||||
wiener_residual=False,
|
||||
cac=True,
|
||||
# Main structure
|
||||
depth=6,
|
||||
rewrite=True,
|
||||
hybrid=True,
|
||||
hybrid_old=False,
|
||||
# Frequency branch
|
||||
multi_freqs=None,
|
||||
multi_freqs_depth=2,
|
||||
freq_emb=0.2,
|
||||
emb_scale=10,
|
||||
emb_smooth=True,
|
||||
# Convolutions
|
||||
kernel_size=8,
|
||||
time_stride=2,
|
||||
stride=4,
|
||||
context=1,
|
||||
context_enc=0,
|
||||
# Normalization
|
||||
norm_starts=4,
|
||||
norm_groups=4,
|
||||
# DConv residual branch
|
||||
dconv_mode=1,
|
||||
dconv_depth=2,
|
||||
dconv_comp=4,
|
||||
dconv_attn=4,
|
||||
dconv_lstm=4,
|
||||
dconv_init=1e-4,
|
||||
# Weight init
|
||||
rescale=0.1,
|
||||
# Metadata
|
||||
samplerate=44100,
|
||||
segment=4 * 10):
|
||||
"""
|
||||
Args:
|
||||
sources (list[str]): list of source names.
|
||||
audio_channels (int): input/output audio channels.
|
||||
channels (int): initial number of hidden channels.
|
||||
channels_time: if not None, use a different `channels` value for the time branch.
|
||||
growth: increase the number of hidden channels by this factor at each layer.
|
||||
nfft: number of fft bins. Note that changing this require careful computation of
|
||||
various shape parameters and will not work out of the box for hybrid models.
|
||||
wiener_iters: when using Wiener filtering, number of iterations at test time.
|
||||
end_iters: same but at train time. For a hybrid model, must be equal to `wiener_iters`.
|
||||
wiener_residual: add residual source before wiener filtering.
|
||||
cac: uses complex as channels, i.e. complex numbers are 2 channels each
|
||||
in input and output. no further processing is done before ISTFT.
|
||||
depth (int): number of layers in the encoder and in the decoder.
|
||||
rewrite (bool): add 1x1 convolution to each layer.
|
||||
hybrid (bool): make a hybrid time/frequency domain, otherwise frequency only.
|
||||
hybrid_old: some models trained for MDX had a padding bug. This replicates
|
||||
this bug to avoid retraining them.
|
||||
multi_freqs: list of frequency ratios for splitting frequency bands with `MultiWrap`.
|
||||
multi_freqs_depth: how many layers to wrap with `MultiWrap`. Only the outermost
|
||||
layers will be wrapped.
|
||||
freq_emb: add frequency embedding after the first frequency layer if > 0,
|
||||
the actual value controls the weight of the embedding.
|
||||
emb_scale: equivalent to scaling the embedding learning rate
|
||||
emb_smooth: initialize the embedding with a smooth one (with respect to frequencies).
|
||||
kernel_size: kernel_size for encoder and decoder layers.
|
||||
stride: stride for encoder and decoder layers.
|
||||
time_stride: stride for the final time layer, after the merge.
|
||||
context: context for 1x1 conv in the decoder.
|
||||
context_enc: context for 1x1 conv in the encoder.
|
||||
norm_starts: layer at which group norm starts being used.
|
||||
decoder layers are numbered in reverse order.
|
||||
norm_groups: number of groups for group norm.
|
||||
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
|
||||
dconv_depth: depth of residual DConv branch.
|
||||
dconv_comp: compression of DConv branch.
|
||||
dconv_attn: adds attention layers in DConv branch starting at this layer.
|
||||
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
|
||||
dconv_init: initial scale for the DConv branch LayerScale.
|
||||
rescale: weight recaling trick
|
||||
|
||||
"""
|
||||
super().__init__()
|
||||
self.cac = cac
|
||||
self.wiener_residual = wiener_residual
|
||||
self.audio_channels = audio_channels
|
||||
self.sources = sources
|
||||
self.kernel_size = kernel_size
|
||||
self.context = context
|
||||
self.stride = stride
|
||||
self.depth = depth
|
||||
self.channels = channels
|
||||
self.samplerate = samplerate
|
||||
self.segment = segment
|
||||
|
||||
self.nfft = nfft
|
||||
self.hop_length = nfft // 4
|
||||
self.wiener_iters = wiener_iters
|
||||
self.end_iters = end_iters
|
||||
self.freq_emb = None
|
||||
self.hybrid = hybrid
|
||||
self.hybrid_old = hybrid_old
|
||||
if hybrid_old:
|
||||
assert hybrid, "hybrid_old must come with hybrid=True"
|
||||
if hybrid:
|
||||
assert wiener_iters == end_iters
|
||||
|
||||
self.encoder = nn.ModuleList()
|
||||
self.decoder = nn.ModuleList()
|
||||
|
||||
if hybrid:
|
||||
self.tencoder = nn.ModuleList()
|
||||
self.tdecoder = nn.ModuleList()
|
||||
|
||||
chin = audio_channels
|
||||
chin_z = chin # number of channels for the freq branch
|
||||
if self.cac:
|
||||
chin_z *= 2
|
||||
chout = channels_time or channels
|
||||
chout_z = channels
|
||||
freqs = nfft // 2
|
||||
|
||||
for index in range(depth):
|
||||
lstm = index >= dconv_lstm
|
||||
attn = index >= dconv_attn
|
||||
norm = index >= norm_starts
|
||||
freq = freqs > 1
|
||||
stri = stride
|
||||
ker = kernel_size
|
||||
if not freq:
|
||||
assert freqs == 1
|
||||
ker = time_stride * 2
|
||||
stri = time_stride
|
||||
|
||||
pad = True
|
||||
last_freq = False
|
||||
if freq and freqs <= kernel_size:
|
||||
ker = freqs
|
||||
pad = False
|
||||
last_freq = True
|
||||
|
||||
kw = {
|
||||
'kernel_size': ker,
|
||||
'stride': stri,
|
||||
'freq': freq,
|
||||
'pad': pad,
|
||||
'norm': norm,
|
||||
'rewrite': rewrite,
|
||||
'norm_groups': norm_groups,
|
||||
'dconv_kw': {
|
||||
'lstm': lstm,
|
||||
'attn': attn,
|
||||
'depth': dconv_depth,
|
||||
'compress': dconv_comp,
|
||||
'init': dconv_init,
|
||||
'gelu': True,
|
||||
}
|
||||
}
|
||||
kwt = dict(kw)
|
||||
kwt['freq'] = 0
|
||||
kwt['kernel_size'] = kernel_size
|
||||
kwt['stride'] = stride
|
||||
kwt['pad'] = True
|
||||
kw_dec = dict(kw)
|
||||
multi = False
|
||||
if multi_freqs and index < multi_freqs_depth:
|
||||
multi = True
|
||||
kw_dec['context_freq'] = False
|
||||
|
||||
if last_freq:
|
||||
chout_z = max(chout, chout_z)
|
||||
chout = chout_z
|
||||
|
||||
enc = HEncLayer(chin_z, chout_z,
|
||||
dconv=dconv_mode & 1, context=context_enc, **kw)
|
||||
if hybrid and freq:
|
||||
tenc = HEncLayer(chin, chout, dconv=dconv_mode & 1, context=context_enc,
|
||||
empty=last_freq, **kwt)
|
||||
self.tencoder.append(tenc)
|
||||
|
||||
if multi:
|
||||
enc = MultiWrap(enc, multi_freqs)
|
||||
self.encoder.append(enc)
|
||||
if index == 0:
|
||||
chin = self.audio_channels * len(self.sources)
|
||||
chin_z = chin
|
||||
if self.cac:
|
||||
chin_z *= 2
|
||||
dec = HDecLayer(chout_z, chin_z, dconv=dconv_mode & 2,
|
||||
last=index == 0, context=context, **kw_dec)
|
||||
if multi:
|
||||
dec = MultiWrap(dec, multi_freqs)
|
||||
if hybrid and freq:
|
||||
tdec = HDecLayer(chout, chin, dconv=dconv_mode & 2, empty=last_freq,
|
||||
last=index == 0, context=context, **kwt)
|
||||
self.tdecoder.insert(0, tdec)
|
||||
self.decoder.insert(0, dec)
|
||||
|
||||
chin = chout
|
||||
chin_z = chout_z
|
||||
chout = int(growth * chout)
|
||||
chout_z = int(growth * chout_z)
|
||||
if freq:
|
||||
if freqs <= kernel_size:
|
||||
freqs = 1
|
||||
else:
|
||||
freqs //= stride
|
||||
if index == 0 and freq_emb:
|
||||
self.freq_emb = ScaledEmbedding(
|
||||
freqs, chin_z, smooth=emb_smooth, scale=emb_scale)
|
||||
self.freq_emb_scale = freq_emb
|
||||
|
||||
if rescale:
|
||||
rescale_module(self, reference=rescale)
|
||||
|
||||
def _spec(self, x):
|
||||
hl = self.hop_length
|
||||
nfft = self.nfft
|
||||
x0 = x # noqa
|
||||
|
||||
if self.hybrid:
|
||||
# We re-pad the signal in order to keep the property
|
||||
# that the size of the output is exactly the size of the input
|
||||
# divided by the stride (here hop_length), when divisible.
|
||||
# This is achieved by padding by 1/4th of the kernel size (here nfft).
|
||||
# which is not supported by torch.stft.
|
||||
# Having all convolution operations follow this convention allow to easily
|
||||
# align the time and frequency branches later on.
|
||||
assert hl == nfft // 4
|
||||
le = int(math.ceil(x.shape[-1] / hl))
|
||||
pad = hl // 2 * 3
|
||||
if not self.hybrid_old:
|
||||
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]), mode='reflect')
|
||||
else:
|
||||
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]))
|
||||
|
||||
z = spectro(x, nfft, hl)[..., :-1, :]
|
||||
if self.hybrid:
|
||||
assert z.shape[-1] == le + 4, (z.shape, x.shape, le)
|
||||
z = z[..., 2:2+le]
|
||||
return z
|
||||
|
||||
def _ispec(self, z, length=None, scale=0):
|
||||
hl = self.hop_length // (4 ** scale)
|
||||
z = F.pad(z, (0, 0, 0, 1))
|
||||
if self.hybrid:
|
||||
z = F.pad(z, (2, 2))
|
||||
pad = hl // 2 * 3
|
||||
if not self.hybrid_old:
|
||||
le = hl * int(math.ceil(length / hl)) + 2 * pad
|
||||
else:
|
||||
le = hl * int(math.ceil(length / hl))
|
||||
x = ispectro(z, hl, length=le)
|
||||
if not self.hybrid_old:
|
||||
x = x[..., pad:pad + length]
|
||||
else:
|
||||
x = x[..., :length]
|
||||
else:
|
||||
x = ispectro(z, hl, length)
|
||||
return x
|
||||
|
||||
def _magnitude(self, z):
|
||||
# return the magnitude of the spectrogram, except when cac is True,
|
||||
# in which case we just move the complex dimension to the channel one.
|
||||
if self.cac:
|
||||
B, C, Fr, T = z.shape
|
||||
m = torch.view_as_real(z).permute(0, 1, 4, 2, 3)
|
||||
m = m.reshape(B, C * 2, Fr, T)
|
||||
else:
|
||||
m = z.abs()
|
||||
return m
|
||||
|
||||
def _mask(self, z, m):
|
||||
# Apply masking given the mixture spectrogram `z` and the estimated mask `m`.
|
||||
# If `cac` is True, `m` is actually a full spectrogram and `z` is ignored.
|
||||
niters = self.wiener_iters
|
||||
if self.cac:
|
||||
B, S, C, Fr, T = m.shape
|
||||
out = m.view(B, S, -1, 2, Fr, T).permute(0, 1, 2, 4, 5, 3)
|
||||
out = torch.view_as_complex(out.contiguous())
|
||||
return out
|
||||
if self.training:
|
||||
niters = self.end_iters
|
||||
if niters < 0:
|
||||
z = z[:, None]
|
||||
return z / (1e-8 + z.abs()) * m
|
||||
else:
|
||||
return self._wiener(m, z, niters)
|
||||
|
||||
def _wiener(self, mag_out, mix_stft, niters):
|
||||
# apply wiener filtering from OpenUnmix.
|
||||
init = mix_stft.dtype
|
||||
wiener_win_len = 300
|
||||
residual = self.wiener_residual
|
||||
|
||||
B, S, C, Fq, T = mag_out.shape
|
||||
mag_out = mag_out.permute(0, 4, 3, 2, 1)
|
||||
mix_stft = torch.view_as_real(mix_stft.permute(0, 3, 2, 1))
|
||||
|
||||
outs = []
|
||||
for sample in range(B):
|
||||
pos = 0
|
||||
out = []
|
||||
for pos in range(0, T, wiener_win_len):
|
||||
frame = slice(pos, pos + wiener_win_len)
|
||||
z_out = wiener(
|
||||
mag_out[sample, frame], mix_stft[sample, frame], niters,
|
||||
residual=residual)
|
||||
out.append(z_out.transpose(-1, -2))
|
||||
outs.append(torch.cat(out, dim=0))
|
||||
out = torch.view_as_complex(torch.stack(outs, 0))
|
||||
out = out.permute(0, 4, 3, 2, 1).contiguous()
|
||||
if residual:
|
||||
out = out[:, :-1]
|
||||
assert list(out.shape) == [B, S, C, Fq, T]
|
||||
return out.to(init)
|
||||
|
||||
def forward(self, mix):
|
||||
x = mix
|
||||
length = x.shape[-1]
|
||||
|
||||
z = self._spec(mix)
|
||||
mag = self._magnitude(z).to(mix.device)
|
||||
x = mag
|
||||
|
||||
B, C, Fq, T = x.shape
|
||||
|
||||
# unlike previous Demucs, we always normalize because it is easier.
|
||||
mean = x.mean(dim=(1, 2, 3), keepdim=True)
|
||||
std = x.std(dim=(1, 2, 3), keepdim=True)
|
||||
x = (x - mean) / (1e-5 + std)
|
||||
# x will be the freq. branch input.
|
||||
|
||||
if self.hybrid:
|
||||
# Prepare the time branch input.
|
||||
xt = mix
|
||||
meant = xt.mean(dim=(1, 2), keepdim=True)
|
||||
stdt = xt.std(dim=(1, 2), keepdim=True)
|
||||
xt = (xt - meant) / (1e-5 + stdt)
|
||||
|
||||
# okay, this is a giant mess I know...
|
||||
saved = [] # skip connections, freq.
|
||||
saved_t = [] # skip connections, time.
|
||||
lengths = [] # saved lengths to properly remove padding, freq branch.
|
||||
lengths_t = [] # saved lengths for time branch.
|
||||
for idx, encode in enumerate(self.encoder):
|
||||
lengths.append(x.shape[-1])
|
||||
inject = None
|
||||
if self.hybrid and idx < len(self.tencoder):
|
||||
# we have not yet merged branches.
|
||||
lengths_t.append(xt.shape[-1])
|
||||
tenc = self.tencoder[idx]
|
||||
xt = tenc(xt)
|
||||
if not tenc.empty:
|
||||
# save for skip connection
|
||||
saved_t.append(xt)
|
||||
else:
|
||||
# tenc contains just the first conv., so that now time and freq.
|
||||
# branches have the same shape and can be merged.
|
||||
inject = xt
|
||||
x = encode(x, inject)
|
||||
if idx == 0 and self.freq_emb is not None:
|
||||
# add frequency embedding to allow for non equivariant convolutions
|
||||
# over the frequency axis.
|
||||
frs = torch.arange(x.shape[-2], device=x.device)
|
||||
emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x)
|
||||
x = x + self.freq_emb_scale * emb
|
||||
|
||||
saved.append(x)
|
||||
|
||||
x = torch.zeros_like(x)
|
||||
if self.hybrid:
|
||||
xt = torch.zeros_like(x)
|
||||
# initialize everything to zero (signal will go through u-net skips).
|
||||
|
||||
for idx, decode in enumerate(self.decoder):
|
||||
skip = saved.pop(-1)
|
||||
x, pre = decode(x, skip, lengths.pop(-1))
|
||||
# `pre` contains the output just before final transposed convolution,
|
||||
# which is used when the freq. and time branch separate.
|
||||
|
||||
if self.hybrid:
|
||||
offset = self.depth - len(self.tdecoder)
|
||||
if self.hybrid and idx >= offset:
|
||||
tdec = self.tdecoder[idx - offset]
|
||||
length_t = lengths_t.pop(-1)
|
||||
if tdec.empty:
|
||||
assert pre.shape[2] == 1, pre.shape
|
||||
pre = pre[:, :, 0]
|
||||
xt, _ = tdec(pre, None, length_t)
|
||||
else:
|
||||
skip = saved_t.pop(-1)
|
||||
xt, _ = tdec(xt, skip, length_t)
|
||||
|
||||
# Let's make sure we used all stored skip connections.
|
||||
assert len(saved) == 0
|
||||
assert len(lengths_t) == 0
|
||||
assert len(saved_t) == 0
|
||||
|
||||
S = len(self.sources)
|
||||
x = x.view(B, S, -1, Fq, T)
|
||||
x = x * std[:, None] + mean[:, None]
|
||||
|
||||
# to cpu as mps doesnt support complex numbers
|
||||
# demucs issue #435 ##432
|
||||
# NOTE: in this case z already is on cpu
|
||||
# TODO: remove this when mps supports complex numbers
|
||||
x_is_mps = x.device.type == "mps"
|
||||
if x_is_mps:
|
||||
x = x.cpu()
|
||||
|
||||
zout = self._mask(z, x)
|
||||
x = self._ispec(zout, length)
|
||||
|
||||
# back to mps device
|
||||
if x_is_mps:
|
||||
x = x.to('mps')
|
||||
|
||||
if self.hybrid:
|
||||
xt = xt.view(B, S, -1, length)
|
||||
xt = xt * stdt[:, None] + meant[:, None]
|
||||
x = xt + x
|
||||
return x
|
||||
660
demucs/htdemucs.py
Normal file
660
demucs/htdemucs.py
Normal file
@@ -0,0 +1,660 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
# First author is Simon Rouard.
|
||||
"""
|
||||
This code contains the spectrogram and Hybrid version of Demucs.
|
||||
"""
|
||||
import math
|
||||
|
||||
from openunmix.filtering import wiener
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from fractions import Fraction
|
||||
from einops import rearrange
|
||||
|
||||
from .transformer import CrossTransformerEncoder
|
||||
|
||||
from .demucs import rescale_module
|
||||
from .states import capture_init
|
||||
from .spec import spectro, ispectro
|
||||
from .hdemucs import pad1d, ScaledEmbedding, HEncLayer, MultiWrap, HDecLayer
|
||||
|
||||
|
||||
class HTDemucs(nn.Module):
|
||||
"""
|
||||
Spectrogram and hybrid Demucs model.
|
||||
The spectrogram model has the same structure as Demucs, except the first few layers are over the
|
||||
frequency axis, until there is only 1 frequency, and then it moves to time convolutions.
|
||||
Frequency layers can still access information across time steps thanks to the DConv residual.
|
||||
|
||||
Hybrid model have a parallel time branch. At some layer, the time branch has the same stride
|
||||
as the frequency branch and then the two are combined. The opposite happens in the decoder.
|
||||
|
||||
Models can either use naive iSTFT from masking, Wiener filtering ([Ulhih et al. 2017]),
|
||||
or complex as channels (CaC) [Choi et al. 2020]. Wiener filtering is based on
|
||||
Open Unmix implementation [Stoter et al. 2019].
|
||||
|
||||
The loss is always on the temporal domain, by backpropagating through the above
|
||||
output methods and iSTFT. This allows to define hybrid models nicely. However, this breaks
|
||||
a bit Wiener filtering, as doing more iteration at test time will change the spectrogram
|
||||
contribution, without changing the one from the waveform, which will lead to worse performance.
|
||||
I tried using the residual option in OpenUnmix Wiener implementation, but it didn't improve.
|
||||
CaC on the other hand provides similar performance for hybrid, and works naturally with
|
||||
hybrid models.
|
||||
|
||||
This model also uses frequency embeddings are used to improve efficiency on convolutions
|
||||
over the freq. axis, following [Isik et al. 2020] (https://arxiv.org/pdf/2008.04470.pdf).
|
||||
|
||||
Unlike classic Demucs, there is no resampling here, and normalization is always applied.
|
||||
"""
|
||||
|
||||
@capture_init
|
||||
def __init__(
|
||||
self,
|
||||
sources,
|
||||
# Channels
|
||||
audio_channels=2,
|
||||
channels=48,
|
||||
channels_time=None,
|
||||
growth=2,
|
||||
# STFT
|
||||
nfft=4096,
|
||||
wiener_iters=0,
|
||||
end_iters=0,
|
||||
wiener_residual=False,
|
||||
cac=True,
|
||||
# Main structure
|
||||
depth=4,
|
||||
rewrite=True,
|
||||
# Frequency branch
|
||||
multi_freqs=None,
|
||||
multi_freqs_depth=3,
|
||||
freq_emb=0.2,
|
||||
emb_scale=10,
|
||||
emb_smooth=True,
|
||||
# Convolutions
|
||||
kernel_size=8,
|
||||
time_stride=2,
|
||||
stride=4,
|
||||
context=1,
|
||||
context_enc=0,
|
||||
# Normalization
|
||||
norm_starts=4,
|
||||
norm_groups=4,
|
||||
# DConv residual branch
|
||||
dconv_mode=1,
|
||||
dconv_depth=2,
|
||||
dconv_comp=8,
|
||||
dconv_init=1e-3,
|
||||
# Before the Transformer
|
||||
bottom_channels=0,
|
||||
# Transformer
|
||||
t_layers=5,
|
||||
t_emb="sin",
|
||||
t_hidden_scale=4.0,
|
||||
t_heads=8,
|
||||
t_dropout=0.0,
|
||||
t_max_positions=10000,
|
||||
t_norm_in=True,
|
||||
t_norm_in_group=False,
|
||||
t_group_norm=False,
|
||||
t_norm_first=True,
|
||||
t_norm_out=True,
|
||||
t_max_period=10000.0,
|
||||
t_weight_decay=0.0,
|
||||
t_lr=None,
|
||||
t_layer_scale=True,
|
||||
t_gelu=True,
|
||||
t_weight_pos_embed=1.0,
|
||||
t_sin_random_shift=0,
|
||||
t_cape_mean_normalize=True,
|
||||
t_cape_augment=True,
|
||||
t_cape_glob_loc_scale=[5000.0, 1.0, 1.4],
|
||||
t_sparse_self_attn=False,
|
||||
t_sparse_cross_attn=False,
|
||||
t_mask_type="diag",
|
||||
t_mask_random_seed=42,
|
||||
t_sparse_attn_window=500,
|
||||
t_global_window=100,
|
||||
t_sparsity=0.95,
|
||||
t_auto_sparsity=False,
|
||||
# ------ Particuliar parameters
|
||||
t_cross_first=False,
|
||||
# Weight init
|
||||
rescale=0.1,
|
||||
# Metadata
|
||||
samplerate=44100,
|
||||
segment=10,
|
||||
use_train_segment=True,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
sources (list[str]): list of source names.
|
||||
audio_channels (int): input/output audio channels.
|
||||
channels (int): initial number of hidden channels.
|
||||
channels_time: if not None, use a different `channels` value for the time branch.
|
||||
growth: increase the number of hidden channels by this factor at each layer.
|
||||
nfft: number of fft bins. Note that changing this require careful computation of
|
||||
various shape parameters and will not work out of the box for hybrid models.
|
||||
wiener_iters: when using Wiener filtering, number of iterations at test time.
|
||||
end_iters: same but at train time. For a hybrid model, must be equal to `wiener_iters`.
|
||||
wiener_residual: add residual source before wiener filtering.
|
||||
cac: uses complex as channels, i.e. complex numbers are 2 channels each
|
||||
in input and output. no further processing is done before ISTFT.
|
||||
depth (int): number of layers in the encoder and in the decoder.
|
||||
rewrite (bool): add 1x1 convolution to each layer.
|
||||
multi_freqs: list of frequency ratios for splitting frequency bands with `MultiWrap`.
|
||||
multi_freqs_depth: how many layers to wrap with `MultiWrap`. Only the outermost
|
||||
layers will be wrapped.
|
||||
freq_emb: add frequency embedding after the first frequency layer if > 0,
|
||||
the actual value controls the weight of the embedding.
|
||||
emb_scale: equivalent to scaling the embedding learning rate
|
||||
emb_smooth: initialize the embedding with a smooth one (with respect to frequencies).
|
||||
kernel_size: kernel_size for encoder and decoder layers.
|
||||
stride: stride for encoder and decoder layers.
|
||||
time_stride: stride for the final time layer, after the merge.
|
||||
context: context for 1x1 conv in the decoder.
|
||||
context_enc: context for 1x1 conv in the encoder.
|
||||
norm_starts: layer at which group norm starts being used.
|
||||
decoder layers are numbered in reverse order.
|
||||
norm_groups: number of groups for group norm.
|
||||
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
|
||||
dconv_depth: depth of residual DConv branch.
|
||||
dconv_comp: compression of DConv branch.
|
||||
dconv_attn: adds attention layers in DConv branch starting at this layer.
|
||||
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
|
||||
dconv_init: initial scale for the DConv branch LayerScale.
|
||||
bottom_channels: if >0 it adds a linear layer (1x1 Conv) before and after the
|
||||
transformer in order to change the number of channels
|
||||
t_layers: number of layers in each branch (waveform and spec) of the transformer
|
||||
t_emb: "sin", "cape" or "scaled"
|
||||
t_hidden_scale: the hidden scale of the Feedforward parts of the transformer
|
||||
for instance if C = 384 (the number of channels in the transformer) and
|
||||
t_hidden_scale = 4.0 then the intermediate layer of the FFN has dimension
|
||||
384 * 4 = 1536
|
||||
t_heads: number of heads for the transformer
|
||||
t_dropout: dropout in the transformer
|
||||
t_max_positions: max_positions for the "scaled" positional embedding, only
|
||||
useful if t_emb="scaled"
|
||||
t_norm_in: (bool) norm before addinf positional embedding and getting into the
|
||||
transformer layers
|
||||
t_norm_in_group: (bool) if True while t_norm_in=True, the norm is on all the
|
||||
timesteps (GroupNorm with group=1)
|
||||
t_group_norm: (bool) if True, the norms of the Encoder Layers are on all the
|
||||
timesteps (GroupNorm with group=1)
|
||||
t_norm_first: (bool) if True the norm is before the attention and before the FFN
|
||||
t_norm_out: (bool) if True, there is a GroupNorm (group=1) at the end of each layer
|
||||
t_max_period: (float) denominator in the sinusoidal embedding expression
|
||||
t_weight_decay: (float) weight decay for the transformer
|
||||
t_lr: (float) specific learning rate for the transformer
|
||||
t_layer_scale: (bool) Layer Scale for the transformer
|
||||
t_gelu: (bool) activations of the transformer are GeLU if True, ReLU else
|
||||
t_weight_pos_embed: (float) weighting of the positional embedding
|
||||
t_cape_mean_normalize: (bool) if t_emb="cape", normalisation of positional embeddings
|
||||
see: https://arxiv.org/abs/2106.03143
|
||||
t_cape_augment: (bool) if t_emb="cape", must be True during training and False
|
||||
during the inference, see: https://arxiv.org/abs/2106.03143
|
||||
t_cape_glob_loc_scale: (list of 3 floats) if t_emb="cape", CAPE parameters
|
||||
see: https://arxiv.org/abs/2106.03143
|
||||
t_sparse_self_attn: (bool) if True, the self attentions are sparse
|
||||
t_sparse_cross_attn: (bool) if True, the cross-attentions are sparse (don't use it
|
||||
unless you designed really specific masks)
|
||||
t_mask_type: (str) can be "diag", "jmask", "random", "global" or any combination
|
||||
with '_' between: i.e. "diag_jmask_random" (note that this is permutation
|
||||
invariant i.e. "diag_jmask_random" is equivalent to "jmask_random_diag")
|
||||
t_mask_random_seed: (int) if "random" is in t_mask_type, controls the seed
|
||||
that generated the random part of the mask
|
||||
t_sparse_attn_window: (int) if "diag" is in t_mask_type, for a query (i), and
|
||||
a key (j), the mask is True id |i-j|<=t_sparse_attn_window
|
||||
t_global_window: (int) if "global" is in t_mask_type, mask[:t_global_window, :]
|
||||
and mask[:, :t_global_window] will be True
|
||||
t_sparsity: (float) if "random" is in t_mask_type, t_sparsity is the sparsity
|
||||
level of the random part of the mask.
|
||||
t_cross_first: (bool) if True cross attention is the first layer of the
|
||||
transformer (False seems to be better)
|
||||
rescale: weight rescaling trick
|
||||
use_train_segment: (bool) if True, the actual size that is used during the
|
||||
training is used during inference.
|
||||
"""
|
||||
super().__init__()
|
||||
self.cac = cac
|
||||
self.wiener_residual = wiener_residual
|
||||
self.audio_channels = audio_channels
|
||||
self.sources = sources
|
||||
self.kernel_size = kernel_size
|
||||
self.context = context
|
||||
self.stride = stride
|
||||
self.depth = depth
|
||||
self.bottom_channels = bottom_channels
|
||||
self.channels = channels
|
||||
self.samplerate = samplerate
|
||||
self.segment = segment
|
||||
self.use_train_segment = use_train_segment
|
||||
self.nfft = nfft
|
||||
self.hop_length = nfft // 4
|
||||
self.wiener_iters = wiener_iters
|
||||
self.end_iters = end_iters
|
||||
self.freq_emb = None
|
||||
assert wiener_iters == end_iters
|
||||
|
||||
self.encoder = nn.ModuleList()
|
||||
self.decoder = nn.ModuleList()
|
||||
|
||||
self.tencoder = nn.ModuleList()
|
||||
self.tdecoder = nn.ModuleList()
|
||||
|
||||
chin = audio_channels
|
||||
chin_z = chin # number of channels for the freq branch
|
||||
if self.cac:
|
||||
chin_z *= 2
|
||||
chout = channels_time or channels
|
||||
chout_z = channels
|
||||
freqs = nfft // 2
|
||||
|
||||
for index in range(depth):
|
||||
norm = index >= norm_starts
|
||||
freq = freqs > 1
|
||||
stri = stride
|
||||
ker = kernel_size
|
||||
if not freq:
|
||||
assert freqs == 1
|
||||
ker = time_stride * 2
|
||||
stri = time_stride
|
||||
|
||||
pad = True
|
||||
last_freq = False
|
||||
if freq and freqs <= kernel_size:
|
||||
ker = freqs
|
||||
pad = False
|
||||
last_freq = True
|
||||
|
||||
kw = {
|
||||
"kernel_size": ker,
|
||||
"stride": stri,
|
||||
"freq": freq,
|
||||
"pad": pad,
|
||||
"norm": norm,
|
||||
"rewrite": rewrite,
|
||||
"norm_groups": norm_groups,
|
||||
"dconv_kw": {
|
||||
"depth": dconv_depth,
|
||||
"compress": dconv_comp,
|
||||
"init": dconv_init,
|
||||
"gelu": True,
|
||||
},
|
||||
}
|
||||
kwt = dict(kw)
|
||||
kwt["freq"] = 0
|
||||
kwt["kernel_size"] = kernel_size
|
||||
kwt["stride"] = stride
|
||||
kwt["pad"] = True
|
||||
kw_dec = dict(kw)
|
||||
multi = False
|
||||
if multi_freqs and index < multi_freqs_depth:
|
||||
multi = True
|
||||
kw_dec["context_freq"] = False
|
||||
|
||||
if last_freq:
|
||||
chout_z = max(chout, chout_z)
|
||||
chout = chout_z
|
||||
|
||||
enc = HEncLayer(
|
||||
chin_z, chout_z, dconv=dconv_mode & 1, context=context_enc, **kw
|
||||
)
|
||||
if freq:
|
||||
tenc = HEncLayer(
|
||||
chin,
|
||||
chout,
|
||||
dconv=dconv_mode & 1,
|
||||
context=context_enc,
|
||||
empty=last_freq,
|
||||
**kwt
|
||||
)
|
||||
self.tencoder.append(tenc)
|
||||
|
||||
if multi:
|
||||
enc = MultiWrap(enc, multi_freqs)
|
||||
self.encoder.append(enc)
|
||||
if index == 0:
|
||||
chin = self.audio_channels * len(self.sources)
|
||||
chin_z = chin
|
||||
if self.cac:
|
||||
chin_z *= 2
|
||||
dec = HDecLayer(
|
||||
chout_z,
|
||||
chin_z,
|
||||
dconv=dconv_mode & 2,
|
||||
last=index == 0,
|
||||
context=context,
|
||||
**kw_dec
|
||||
)
|
||||
if multi:
|
||||
dec = MultiWrap(dec, multi_freqs)
|
||||
if freq:
|
||||
tdec = HDecLayer(
|
||||
chout,
|
||||
chin,
|
||||
dconv=dconv_mode & 2,
|
||||
empty=last_freq,
|
||||
last=index == 0,
|
||||
context=context,
|
||||
**kwt
|
||||
)
|
||||
self.tdecoder.insert(0, tdec)
|
||||
self.decoder.insert(0, dec)
|
||||
|
||||
chin = chout
|
||||
chin_z = chout_z
|
||||
chout = int(growth * chout)
|
||||
chout_z = int(growth * chout_z)
|
||||
if freq:
|
||||
if freqs <= kernel_size:
|
||||
freqs = 1
|
||||
else:
|
||||
freqs //= stride
|
||||
if index == 0 and freq_emb:
|
||||
self.freq_emb = ScaledEmbedding(
|
||||
freqs, chin_z, smooth=emb_smooth, scale=emb_scale
|
||||
)
|
||||
self.freq_emb_scale = freq_emb
|
||||
|
||||
if rescale:
|
||||
rescale_module(self, reference=rescale)
|
||||
|
||||
transformer_channels = channels * growth ** (depth - 1)
|
||||
if bottom_channels:
|
||||
self.channel_upsampler = nn.Conv1d(transformer_channels, bottom_channels, 1)
|
||||
self.channel_downsampler = nn.Conv1d(
|
||||
bottom_channels, transformer_channels, 1
|
||||
)
|
||||
self.channel_upsampler_t = nn.Conv1d(
|
||||
transformer_channels, bottom_channels, 1
|
||||
)
|
||||
self.channel_downsampler_t = nn.Conv1d(
|
||||
bottom_channels, transformer_channels, 1
|
||||
)
|
||||
|
||||
transformer_channels = bottom_channels
|
||||
|
||||
if t_layers > 0:
|
||||
self.crosstransformer = CrossTransformerEncoder(
|
||||
dim=transformer_channels,
|
||||
emb=t_emb,
|
||||
hidden_scale=t_hidden_scale,
|
||||
num_heads=t_heads,
|
||||
num_layers=t_layers,
|
||||
cross_first=t_cross_first,
|
||||
dropout=t_dropout,
|
||||
max_positions=t_max_positions,
|
||||
norm_in=t_norm_in,
|
||||
norm_in_group=t_norm_in_group,
|
||||
group_norm=t_group_norm,
|
||||
norm_first=t_norm_first,
|
||||
norm_out=t_norm_out,
|
||||
max_period=t_max_period,
|
||||
weight_decay=t_weight_decay,
|
||||
lr=t_lr,
|
||||
layer_scale=t_layer_scale,
|
||||
gelu=t_gelu,
|
||||
sin_random_shift=t_sin_random_shift,
|
||||
weight_pos_embed=t_weight_pos_embed,
|
||||
cape_mean_normalize=t_cape_mean_normalize,
|
||||
cape_augment=t_cape_augment,
|
||||
cape_glob_loc_scale=t_cape_glob_loc_scale,
|
||||
sparse_self_attn=t_sparse_self_attn,
|
||||
sparse_cross_attn=t_sparse_cross_attn,
|
||||
mask_type=t_mask_type,
|
||||
mask_random_seed=t_mask_random_seed,
|
||||
sparse_attn_window=t_sparse_attn_window,
|
||||
global_window=t_global_window,
|
||||
sparsity=t_sparsity,
|
||||
auto_sparsity=t_auto_sparsity,
|
||||
)
|
||||
else:
|
||||
self.crosstransformer = None
|
||||
|
||||
def _spec(self, x):
|
||||
hl = self.hop_length
|
||||
nfft = self.nfft
|
||||
x0 = x # noqa
|
||||
|
||||
# We re-pad the signal in order to keep the property
|
||||
# that the size of the output is exactly the size of the input
|
||||
# divided by the stride (here hop_length), when divisible.
|
||||
# This is achieved by padding by 1/4th of the kernel size (here nfft).
|
||||
# which is not supported by torch.stft.
|
||||
# Having all convolution operations follow this convention allow to easily
|
||||
# align the time and frequency branches later on.
|
||||
assert hl == nfft // 4
|
||||
le = int(math.ceil(x.shape[-1] / hl))
|
||||
pad = hl // 2 * 3
|
||||
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]), mode="reflect")
|
||||
|
||||
z = spectro(x, nfft, hl)[..., :-1, :]
|
||||
assert z.shape[-1] == le + 4, (z.shape, x.shape, le)
|
||||
z = z[..., 2: 2 + le]
|
||||
return z
|
||||
|
||||
def _ispec(self, z, length=None, scale=0):
|
||||
hl = self.hop_length // (4**scale)
|
||||
z = F.pad(z, (0, 0, 0, 1))
|
||||
z = F.pad(z, (2, 2))
|
||||
pad = hl // 2 * 3
|
||||
le = hl * int(math.ceil(length / hl)) + 2 * pad
|
||||
x = ispectro(z, hl, length=le)
|
||||
x = x[..., pad: pad + length]
|
||||
return x
|
||||
|
||||
def _magnitude(self, z):
|
||||
# return the magnitude of the spectrogram, except when cac is True,
|
||||
# in which case we just move the complex dimension to the channel one.
|
||||
if self.cac:
|
||||
B, C, Fr, T = z.shape
|
||||
m = torch.view_as_real(z).permute(0, 1, 4, 2, 3)
|
||||
m = m.reshape(B, C * 2, Fr, T)
|
||||
else:
|
||||
m = z.abs()
|
||||
return m
|
||||
|
||||
def _mask(self, z, m):
|
||||
# Apply masking given the mixture spectrogram `z` and the estimated mask `m`.
|
||||
# If `cac` is True, `m` is actually a full spectrogram and `z` is ignored.
|
||||
niters = self.wiener_iters
|
||||
if self.cac:
|
||||
B, S, C, Fr, T = m.shape
|
||||
out = m.view(B, S, -1, 2, Fr, T).permute(0, 1, 2, 4, 5, 3)
|
||||
out = torch.view_as_complex(out.contiguous())
|
||||
return out
|
||||
if self.training:
|
||||
niters = self.end_iters
|
||||
if niters < 0:
|
||||
z = z[:, None]
|
||||
return z / (1e-8 + z.abs()) * m
|
||||
else:
|
||||
return self._wiener(m, z, niters)
|
||||
|
||||
def _wiener(self, mag_out, mix_stft, niters):
|
||||
# apply wiener filtering from OpenUnmix.
|
||||
init = mix_stft.dtype
|
||||
wiener_win_len = 300
|
||||
residual = self.wiener_residual
|
||||
|
||||
B, S, C, Fq, T = mag_out.shape
|
||||
mag_out = mag_out.permute(0, 4, 3, 2, 1)
|
||||
mix_stft = torch.view_as_real(mix_stft.permute(0, 3, 2, 1))
|
||||
|
||||
outs = []
|
||||
for sample in range(B):
|
||||
pos = 0
|
||||
out = []
|
||||
for pos in range(0, T, wiener_win_len):
|
||||
frame = slice(pos, pos + wiener_win_len)
|
||||
z_out = wiener(
|
||||
mag_out[sample, frame],
|
||||
mix_stft[sample, frame],
|
||||
niters,
|
||||
residual=residual,
|
||||
)
|
||||
out.append(z_out.transpose(-1, -2))
|
||||
outs.append(torch.cat(out, dim=0))
|
||||
out = torch.view_as_complex(torch.stack(outs, 0))
|
||||
out = out.permute(0, 4, 3, 2, 1).contiguous()
|
||||
if residual:
|
||||
out = out[:, :-1]
|
||||
assert list(out.shape) == [B, S, C, Fq, T]
|
||||
return out.to(init)
|
||||
|
||||
def valid_length(self, length: int):
|
||||
"""
|
||||
Return a length that is appropriate for evaluation.
|
||||
In our case, always return the training length, unless
|
||||
it is smaller than the given length, in which case this
|
||||
raises an error.
|
||||
"""
|
||||
if not self.use_train_segment:
|
||||
return length
|
||||
training_length = int(self.segment * self.samplerate)
|
||||
if training_length < length:
|
||||
raise ValueError(
|
||||
f"Given length {length} is longer than "
|
||||
f"training length {training_length}")
|
||||
return training_length
|
||||
|
||||
def forward(self, mix):
|
||||
length = mix.shape[-1]
|
||||
length_pre_pad = None
|
||||
if self.use_train_segment:
|
||||
if self.training:
|
||||
self.segment = Fraction(mix.shape[-1], self.samplerate)
|
||||
else:
|
||||
training_length = int(self.segment * self.samplerate)
|
||||
if mix.shape[-1] < training_length:
|
||||
length_pre_pad = mix.shape[-1]
|
||||
mix = F.pad(mix, (0, training_length - length_pre_pad))
|
||||
z = self._spec(mix)
|
||||
mag = self._magnitude(z).to(mix.device)
|
||||
x = mag
|
||||
|
||||
B, C, Fq, T = x.shape
|
||||
|
||||
# unlike previous Demucs, we always normalize because it is easier.
|
||||
mean = x.mean(dim=(1, 2, 3), keepdim=True)
|
||||
std = x.std(dim=(1, 2, 3), keepdim=True)
|
||||
x = (x - mean) / (1e-5 + std)
|
||||
# x will be the freq. branch input.
|
||||
|
||||
# Prepare the time branch input.
|
||||
xt = mix
|
||||
meant = xt.mean(dim=(1, 2), keepdim=True)
|
||||
stdt = xt.std(dim=(1, 2), keepdim=True)
|
||||
xt = (xt - meant) / (1e-5 + stdt)
|
||||
|
||||
# okay, this is a giant mess I know...
|
||||
saved = [] # skip connections, freq.
|
||||
saved_t = [] # skip connections, time.
|
||||
lengths = [] # saved lengths to properly remove padding, freq branch.
|
||||
lengths_t = [] # saved lengths for time branch.
|
||||
for idx, encode in enumerate(self.encoder):
|
||||
lengths.append(x.shape[-1])
|
||||
inject = None
|
||||
if idx < len(self.tencoder):
|
||||
# we have not yet merged branches.
|
||||
lengths_t.append(xt.shape[-1])
|
||||
tenc = self.tencoder[idx]
|
||||
xt = tenc(xt)
|
||||
if not tenc.empty:
|
||||
# save for skip connection
|
||||
saved_t.append(xt)
|
||||
else:
|
||||
# tenc contains just the first conv., so that now time and freq.
|
||||
# branches have the same shape and can be merged.
|
||||
inject = xt
|
||||
x = encode(x, inject)
|
||||
if idx == 0 and self.freq_emb is not None:
|
||||
# add frequency embedding to allow for non equivariant convolutions
|
||||
# over the frequency axis.
|
||||
frs = torch.arange(x.shape[-2], device=x.device)
|
||||
emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x)
|
||||
x = x + self.freq_emb_scale * emb
|
||||
|
||||
saved.append(x)
|
||||
if self.crosstransformer:
|
||||
if self.bottom_channels:
|
||||
b, c, f, t = x.shape
|
||||
x = rearrange(x, "b c f t-> b c (f t)")
|
||||
x = self.channel_upsampler(x)
|
||||
x = rearrange(x, "b c (f t)-> b c f t", f=f)
|
||||
xt = self.channel_upsampler_t(xt)
|
||||
|
||||
x, xt = self.crosstransformer(x, xt)
|
||||
|
||||
if self.bottom_channels:
|
||||
x = rearrange(x, "b c f t-> b c (f t)")
|
||||
x = self.channel_downsampler(x)
|
||||
x = rearrange(x, "b c (f t)-> b c f t", f=f)
|
||||
xt = self.channel_downsampler_t(xt)
|
||||
|
||||
for idx, decode in enumerate(self.decoder):
|
||||
skip = saved.pop(-1)
|
||||
x, pre = decode(x, skip, lengths.pop(-1))
|
||||
# `pre` contains the output just before final transposed convolution,
|
||||
# which is used when the freq. and time branch separate.
|
||||
|
||||
offset = self.depth - len(self.tdecoder)
|
||||
if idx >= offset:
|
||||
tdec = self.tdecoder[idx - offset]
|
||||
length_t = lengths_t.pop(-1)
|
||||
if tdec.empty:
|
||||
assert pre.shape[2] == 1, pre.shape
|
||||
pre = pre[:, :, 0]
|
||||
xt, _ = tdec(pre, None, length_t)
|
||||
else:
|
||||
skip = saved_t.pop(-1)
|
||||
xt, _ = tdec(xt, skip, length_t)
|
||||
|
||||
# Let's make sure we used all stored skip connections.
|
||||
assert len(saved) == 0
|
||||
assert len(lengths_t) == 0
|
||||
assert len(saved_t) == 0
|
||||
|
||||
S = len(self.sources)
|
||||
x = x.view(B, S, -1, Fq, T)
|
||||
x = x * std[:, None] + mean[:, None]
|
||||
|
||||
# to cpu as mps doesnt support complex numbers
|
||||
# demucs issue #435 ##432
|
||||
# NOTE: in this case z already is on cpu
|
||||
# TODO: remove this when mps supports complex numbers
|
||||
x_is_mps = x.device.type == "mps"
|
||||
if x_is_mps:
|
||||
x = x.cpu()
|
||||
|
||||
zout = self._mask(z, x)
|
||||
if self.use_train_segment:
|
||||
if self.training:
|
||||
x = self._ispec(zout, length)
|
||||
else:
|
||||
x = self._ispec(zout, training_length)
|
||||
else:
|
||||
x = self._ispec(zout, length)
|
||||
|
||||
# back to mps device
|
||||
if x_is_mps:
|
||||
x = x.to("mps")
|
||||
|
||||
if self.use_train_segment:
|
||||
if self.training:
|
||||
xt = xt.view(B, S, -1, length)
|
||||
else:
|
||||
xt = xt.view(B, S, -1, training_length)
|
||||
else:
|
||||
xt = xt.view(B, S, -1, length)
|
||||
xt = xt * stdt[:, None] + meant[:, None]
|
||||
x = xt + x
|
||||
if length_pre_pad:
|
||||
x = x[..., :length_pre_pad]
|
||||
return x
|
||||
97
demucs/pretrained.py
Normal file
97
demucs/pretrained.py
Normal file
@@ -0,0 +1,97 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""Loading pretrained models.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
import typing as tp
|
||||
from log import log_step
|
||||
|
||||
from dora.log import fatal, bold
|
||||
|
||||
from .hdemucs import HDemucs
|
||||
from .repo import RemoteRepo, LocalRepo, ModelOnlyRepo, BagOnlyRepo, AnyModelRepo, ModelLoadingError # noqa
|
||||
from .states import _check_diffq
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
ROOT_URL = "https://dl.fbaipublicfiles.com/demucs/"
|
||||
REMOTE_ROOT = Path(__file__).parent / 'remote'
|
||||
|
||||
SOURCES = ["drums", "bass", "other", "vocals"]
|
||||
DEFAULT_MODEL = 'htdemucs'
|
||||
|
||||
|
||||
def demucs_unittest():
|
||||
model = HDemucs(channels=4, sources=SOURCES)
|
||||
return model
|
||||
|
||||
|
||||
def add_model_flags(parser):
|
||||
group = parser.add_mutually_exclusive_group(required=False)
|
||||
group.add_argument("-s", "--sig", help="Locally trained XP signature.")
|
||||
group.add_argument("-n", "--name", default=None,
|
||||
help="Pretrained model name or signature. Default is htdemucs.")
|
||||
parser.add_argument("--repo", type=Path,
|
||||
help="Folder containing all pre-trained models for use with -n.")
|
||||
|
||||
|
||||
def _parse_remote_files(remote_file_list) -> tp.Dict[str, str]:
|
||||
root: str = ''
|
||||
models: tp.Dict[str, str] = {}
|
||||
for line in remote_file_list.read_text().split('\n'):
|
||||
line = line.strip()
|
||||
if line.startswith('#'):
|
||||
continue
|
||||
elif line.startswith('root:'):
|
||||
root = line.split(':', 1)[1].strip()
|
||||
else:
|
||||
sig = line.split('-', 1)[0]
|
||||
assert sig not in models
|
||||
models[sig] = ROOT_URL + root + line
|
||||
return models
|
||||
|
||||
|
||||
def get_model(name: str,
|
||||
repo: tp.Optional[Path] = None):
|
||||
"""`name` must be a bag of models name or a pretrained signature
|
||||
from the remote AWS model repo or the specified local repo if `repo` is not None.
|
||||
"""
|
||||
if name == 'demucs_unittest':
|
||||
return demucs_unittest()
|
||||
model_repo: ModelOnlyRepo
|
||||
if repo is None:
|
||||
models = _parse_remote_files(REMOTE_ROOT / 'files.txt')
|
||||
model_repo = RemoteRepo(models)
|
||||
bag_repo = BagOnlyRepo(REMOTE_ROOT, model_repo)
|
||||
else:
|
||||
if not repo.is_dir():
|
||||
fatal(f"{repo} must exist and be a directory.")
|
||||
model_repo = LocalRepo(repo)
|
||||
bag_repo = BagOnlyRepo(repo, model_repo)
|
||||
any_repo = AnyModelRepo(model_repo, bag_repo)
|
||||
try:
|
||||
model = any_repo.get_model(name)
|
||||
except ImportError as exc:
|
||||
if 'diffq' in exc.args[0]:
|
||||
_check_diffq()
|
||||
raise
|
||||
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
|
||||
def get_model_from_args(args):
|
||||
"""
|
||||
Load local model package or pre-trained model.
|
||||
"""
|
||||
if args.name is None:
|
||||
args.name = DEFAULT_MODEL
|
||||
log_step("warning", 100, "Important: the default model was recently changed to `htdemucs`."
|
||||
"the latest Hybrid Transformer Demucs model. In some cases, this model can "
|
||||
"actually perform worse than previous models. To get back the old default model "
|
||||
"use `-n mdx_extra_q`.")
|
||||
return get_model(name=args.name, repo=args.repo)
|
||||
0
demucs/py.typed
Normal file
0
demucs/py.typed
Normal file
32
demucs/remote/files.txt
Normal file
32
demucs/remote/files.txt
Normal file
@@ -0,0 +1,32 @@
|
||||
# MDX Models
|
||||
root: mdx_final/
|
||||
0d19c1c6-0f06f20e.th
|
||||
5d2d6c55-db83574e.th
|
||||
7d865c68-3d5dd56b.th
|
||||
7ecf8ec1-70f50cc9.th
|
||||
a1d90b5c-ae9d2452.th
|
||||
c511e2ab-fe698775.th
|
||||
cfa93e08-61801ae1.th
|
||||
e51eebcc-c1b80bdd.th
|
||||
6b9c2ca1-3fd82607.th
|
||||
b72baf4e-8778635e.th
|
||||
42e558d4-196e0e1b.th
|
||||
305bc58f-18378783.th
|
||||
14fc6a69-a89dd0ee.th
|
||||
464b36d7-e5a9386e.th
|
||||
7fd6ef75-a905dd85.th
|
||||
83fc094f-4a16d450.th
|
||||
1ef250f1-592467ce.th
|
||||
902315c2-b39ce9c9.th
|
||||
9a6b4851-03af0aa6.th
|
||||
fa0cb7f9-100d8bf4.th
|
||||
# Hybrid Transformer models
|
||||
root: hybrid_transformer/
|
||||
955717e8-8726e21a.th
|
||||
f7e0c4bc-ba3fe64a.th
|
||||
d12395a8-e57c48e6.th
|
||||
92cfc3b6-ef3bcb9c.th
|
||||
04573f0d-f3cf25b2.th
|
||||
75fc33f5-1941ce65.th
|
||||
# Experimental 6 sources model
|
||||
5c90dfd2-34c22ccb.th
|
||||
2
demucs/remote/hdemucs_mmi.yaml
Normal file
2
demucs/remote/hdemucs_mmi.yaml
Normal file
@@ -0,0 +1,2 @@
|
||||
models: ['75fc33f5']
|
||||
segment: 44
|
||||
1
demucs/remote/htdemucs.yaml
Normal file
1
demucs/remote/htdemucs.yaml
Normal file
@@ -0,0 +1 @@
|
||||
models: ['955717e8']
|
||||
1
demucs/remote/htdemucs_6s.yaml
Normal file
1
demucs/remote/htdemucs_6s.yaml
Normal file
@@ -0,0 +1 @@
|
||||
models: ['5c90dfd2']
|
||||
7
demucs/remote/htdemucs_ft.yaml
Normal file
7
demucs/remote/htdemucs_ft.yaml
Normal file
@@ -0,0 +1,7 @@
|
||||
models: ['f7e0c4bc', 'd12395a8', '92cfc3b6', '04573f0d']
|
||||
weights: [
|
||||
[1., 0., 0., 0.],
|
||||
[0., 1., 0., 0.],
|
||||
[0., 0., 1., 0.],
|
||||
[0., 0., 0., 1.],
|
||||
]
|
||||
8
demucs/remote/mdx.yaml
Normal file
8
demucs/remote/mdx.yaml
Normal file
@@ -0,0 +1,8 @@
|
||||
models: ['0d19c1c6', '7ecf8ec1', 'c511e2ab', '7d865c68']
|
||||
weights: [
|
||||
[1., 1., 0., 0.],
|
||||
[0., 1., 0., 0.],
|
||||
[1., 0., 1., 1.],
|
||||
[1., 0., 1., 1.],
|
||||
]
|
||||
segment: 44
|
||||
2
demucs/remote/mdx_extra.yaml
Normal file
2
demucs/remote/mdx_extra.yaml
Normal file
@@ -0,0 +1,2 @@
|
||||
models: ['e51eebcc', 'a1d90b5c', '5d2d6c55', 'cfa93e08']
|
||||
segment: 44
|
||||
2
demucs/remote/mdx_extra_q.yaml
Normal file
2
demucs/remote/mdx_extra_q.yaml
Normal file
@@ -0,0 +1,2 @@
|
||||
models: ['83fc094f', '464b36d7', '14fc6a69', '7fd6ef75']
|
||||
segment: 44
|
||||
8
demucs/remote/mdx_q.yaml
Normal file
8
demucs/remote/mdx_q.yaml
Normal file
@@ -0,0 +1,8 @@
|
||||
models: ['6b9c2ca1', 'b72baf4e', '42e558d4', '305bc58f']
|
||||
weights: [
|
||||
[1., 1., 0., 0.],
|
||||
[0., 1., 0., 0.],
|
||||
[1., 0., 1., 1.],
|
||||
[1., 0., 1., 1.],
|
||||
]
|
||||
segment: 44
|
||||
2
demucs/remote/repro_mdx_a.yaml
Normal file
2
demucs/remote/repro_mdx_a.yaml
Normal file
@@ -0,0 +1,2 @@
|
||||
models: ['9a6b4851', '1ef250f1', 'fa0cb7f9', '902315c2']
|
||||
segment: 44
|
||||
2
demucs/remote/repro_mdx_a_hybrid_only.yaml
Normal file
2
demucs/remote/repro_mdx_a_hybrid_only.yaml
Normal file
@@ -0,0 +1,2 @@
|
||||
models: ['fa0cb7f9', '902315c2', 'fa0cb7f9', '902315c2']
|
||||
segment: 44
|
||||
2
demucs/remote/repro_mdx_a_time_only.yaml
Normal file
2
demucs/remote/repro_mdx_a_time_only.yaml
Normal file
@@ -0,0 +1,2 @@
|
||||
models: ['9a6b4851', '9a6b4851', '1ef250f1', '1ef250f1']
|
||||
segment: 44
|
||||
86
demucs/repitch.py
Normal file
86
demucs/repitch.py
Normal file
@@ -0,0 +1,86 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""Utility for on the fly pitch/tempo change for data augmentation."""
|
||||
|
||||
import random
|
||||
import subprocess as sp
|
||||
import tempfile
|
||||
|
||||
import torch
|
||||
import torchaudio as ta
|
||||
|
||||
from .audio import save_audio
|
||||
|
||||
|
||||
class RepitchedWrapper:
|
||||
"""
|
||||
Wrap a dataset to apply online change of pitch / tempo.
|
||||
"""
|
||||
def __init__(self, dataset, proba=0.2, max_pitch=2, max_tempo=12,
|
||||
tempo_std=5, vocals=[3], same=True):
|
||||
self.dataset = dataset
|
||||
self.proba = proba
|
||||
self.max_pitch = max_pitch
|
||||
self.max_tempo = max_tempo
|
||||
self.tempo_std = tempo_std
|
||||
self.same = same
|
||||
self.vocals = vocals
|
||||
|
||||
def __len__(self):
|
||||
return len(self.dataset)
|
||||
|
||||
def __getitem__(self, index):
|
||||
streams = self.dataset[index]
|
||||
in_length = streams.shape[-1]
|
||||
out_length = int((1 - 0.01 * self.max_tempo) * in_length)
|
||||
|
||||
if random.random() < self.proba:
|
||||
outs = []
|
||||
for idx, stream in enumerate(streams):
|
||||
if idx == 0 or not self.same:
|
||||
delta_pitch = random.randint(-self.max_pitch, self.max_pitch)
|
||||
delta_tempo = random.gauss(0, self.tempo_std)
|
||||
delta_tempo = min(max(-self.max_tempo, delta_tempo), self.max_tempo)
|
||||
stream = repitch(
|
||||
stream,
|
||||
delta_pitch,
|
||||
delta_tempo,
|
||||
voice=idx in self.vocals)
|
||||
outs.append(stream[:, :out_length])
|
||||
streams = torch.stack(outs)
|
||||
else:
|
||||
streams = streams[..., :out_length]
|
||||
return streams
|
||||
|
||||
|
||||
def repitch(wav, pitch, tempo, voice=False, quick=False, samplerate=44100):
|
||||
"""
|
||||
tempo is a relative delta in percentage, so tempo=10 means tempo at 110%!
|
||||
pitch is in semi tones.
|
||||
Requires `soundstretch` to be installed, see
|
||||
https://www.surina.net/soundtouch/soundstretch.html
|
||||
"""
|
||||
infile = tempfile.NamedTemporaryFile(suffix=".wav")
|
||||
outfile = tempfile.NamedTemporaryFile(suffix=".wav")
|
||||
save_audio(wav, infile.name, samplerate, clip='clamp')
|
||||
command = [
|
||||
"soundstretch",
|
||||
infile.name,
|
||||
outfile.name,
|
||||
f"-pitch={pitch}",
|
||||
f"-tempo={tempo:.6f}",
|
||||
]
|
||||
if quick:
|
||||
command += ["-quick"]
|
||||
if voice:
|
||||
command += ["-speech"]
|
||||
try:
|
||||
sp.run(command, capture_output=True, check=True)
|
||||
except sp.CalledProcessError as error:
|
||||
raise RuntimeError(f"Could not change bpm because {error.stderr.decode('utf-8')}")
|
||||
wav, sr = ta.load(outfile.name)
|
||||
assert sr == samplerate
|
||||
return wav
|
||||
148
demucs/repo.py
Normal file
148
demucs/repo.py
Normal file
@@ -0,0 +1,148 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""Represents a model repository, including pre-trained models and bags of models.
|
||||
A repo can either be the main remote repository stored in AWS, or a local repository
|
||||
with your own models.
|
||||
"""
|
||||
|
||||
from hashlib import sha256
|
||||
from pathlib import Path
|
||||
import typing as tp
|
||||
|
||||
import torch
|
||||
import yaml
|
||||
|
||||
from .apply import BagOfModels, Model
|
||||
from .states import load_model
|
||||
|
||||
|
||||
AnyModel = tp.Union[Model, BagOfModels]
|
||||
|
||||
|
||||
class ModelLoadingError(RuntimeError):
|
||||
pass
|
||||
|
||||
|
||||
def check_checksum(path: Path, checksum: str):
|
||||
sha = sha256()
|
||||
with open(path, 'rb') as file:
|
||||
while True:
|
||||
buf = file.read(2**20)
|
||||
if not buf:
|
||||
break
|
||||
sha.update(buf)
|
||||
actual_checksum = sha.hexdigest()[:len(checksum)]
|
||||
if actual_checksum != checksum:
|
||||
raise ModelLoadingError(f'Invalid checksum for file {path}, '
|
||||
f'expected {checksum} but got {actual_checksum}')
|
||||
|
||||
|
||||
class ModelOnlyRepo:
|
||||
"""Base class for all model only repos.
|
||||
"""
|
||||
def has_model(self, sig: str) -> bool:
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_model(self, sig: str) -> Model:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class RemoteRepo(ModelOnlyRepo):
|
||||
def __init__(self, models: tp.Dict[str, str]):
|
||||
self._models = models
|
||||
|
||||
def has_model(self, sig: str) -> bool:
|
||||
return sig in self._models
|
||||
|
||||
def get_model(self, sig: str) -> Model:
|
||||
try:
|
||||
url = self._models[sig]
|
||||
except KeyError:
|
||||
raise ModelLoadingError(f'Could not find a pre-trained model with signature {sig}.')
|
||||
pkg = torch.hub.load_state_dict_from_url(
|
||||
url, map_location='cpu', check_hash=True) # type: ignore
|
||||
return load_model(pkg)
|
||||
|
||||
|
||||
class LocalRepo(ModelOnlyRepo):
|
||||
def __init__(self, root: Path):
|
||||
self.root = root
|
||||
self.scan()
|
||||
|
||||
def scan(self):
|
||||
self._models = {}
|
||||
self._checksums = {}
|
||||
for file in self.root.iterdir():
|
||||
if file.suffix == '.th':
|
||||
if '-' in file.stem:
|
||||
xp_sig, checksum = file.stem.split('-')
|
||||
self._checksums[xp_sig] = checksum
|
||||
else:
|
||||
xp_sig = file.stem
|
||||
if xp_sig in self._models:
|
||||
raise ModelLoadingError(
|
||||
f'Duplicate pre-trained model exist for signature {xp_sig}. '
|
||||
'Please delete all but one.')
|
||||
self._models[xp_sig] = file
|
||||
|
||||
def has_model(self, sig: str) -> bool:
|
||||
return sig in self._models
|
||||
|
||||
def get_model(self, sig: str) -> Model:
|
||||
try:
|
||||
file = self._models[sig]
|
||||
except KeyError:
|
||||
raise ModelLoadingError(f'Could not find pre-trained model with signature {sig}.')
|
||||
if sig in self._checksums:
|
||||
check_checksum(file, self._checksums[sig])
|
||||
return load_model(file)
|
||||
|
||||
|
||||
class BagOnlyRepo:
|
||||
"""Handles only YAML files containing bag of models, leaving the actual
|
||||
model loading to some Repo.
|
||||
"""
|
||||
def __init__(self, root: Path, model_repo: ModelOnlyRepo):
|
||||
self.root = root
|
||||
self.model_repo = model_repo
|
||||
self.scan()
|
||||
|
||||
def scan(self):
|
||||
self._bags = {}
|
||||
for file in self.root.iterdir():
|
||||
if file.suffix == '.yaml':
|
||||
self._bags[file.stem] = file
|
||||
|
||||
def has_model(self, name: str) -> bool:
|
||||
return name in self._bags
|
||||
|
||||
def get_model(self, name: str) -> BagOfModels:
|
||||
try:
|
||||
yaml_file = self._bags[name]
|
||||
except KeyError:
|
||||
raise ModelLoadingError(f'{name} is neither a single pre-trained model or '
|
||||
'a bag of models.')
|
||||
bag = yaml.safe_load(open(yaml_file))
|
||||
signatures = bag['models']
|
||||
models = [self.model_repo.get_model(sig) for sig in signatures]
|
||||
weights = bag.get('weights')
|
||||
segment = bag.get('segment')
|
||||
return BagOfModels(models, weights, segment)
|
||||
|
||||
|
||||
class AnyModelRepo:
|
||||
def __init__(self, model_repo: ModelOnlyRepo, bag_repo: BagOnlyRepo):
|
||||
self.model_repo = model_repo
|
||||
self.bag_repo = bag_repo
|
||||
|
||||
def has_model(self, name_or_sig: str) -> bool:
|
||||
return self.model_repo.has_model(name_or_sig) or self.bag_repo.has_model(name_or_sig)
|
||||
|
||||
def get_model(self, name_or_sig: str) -> AnyModel:
|
||||
if self.model_repo.has_model(name_or_sig):
|
||||
return self.model_repo.get_model(name_or_sig)
|
||||
else:
|
||||
return self.bag_repo.get_model(name_or_sig)
|
||||
214
demucs/separate.py
Normal file
214
demucs/separate.py
Normal file
@@ -0,0 +1,214 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
import sys
|
||||
from pathlib import Path
|
||||
import subprocess
|
||||
from log import log_step
|
||||
|
||||
from dora.log import fatal
|
||||
import torch as th
|
||||
import torchaudio as ta
|
||||
|
||||
from .apply import apply_model, BagOfModels
|
||||
from .audio import AudioFile, convert_audio, save_audio
|
||||
from .htdemucs import HTDemucs
|
||||
from .pretrained import get_model_from_args, add_model_flags, ModelLoadingError
|
||||
|
||||
|
||||
def load_track(track, audio_channels, samplerate):
|
||||
errors = {}
|
||||
wav = None
|
||||
|
||||
try:
|
||||
wav = AudioFile(track).read(
|
||||
streams=0,
|
||||
samplerate=samplerate,
|
||||
channels=audio_channels)
|
||||
except FileNotFoundError:
|
||||
errors['ffmpeg'] = 'FFmpeg is not installed.'
|
||||
except subprocess.CalledProcessError:
|
||||
errors['ffmpeg'] = 'FFmpeg could not read the file.'
|
||||
|
||||
if wav is None:
|
||||
try:
|
||||
wav, sr = ta.load(str(track))
|
||||
except RuntimeError as err:
|
||||
errors['torchaudio'] = err.args[0]
|
||||
else:
|
||||
wav = convert_audio(wav, sr, samplerate, audio_channels)
|
||||
|
||||
if wav is None:
|
||||
# raise Exception("Could not load file {track}. Maybe it is not a supported file format?")
|
||||
for backend, error in errors.items():
|
||||
raise Exception("{backend}: {error}")
|
||||
return wav
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser("demucs.separate",
|
||||
description="Separate the sources for the given tracks")
|
||||
parser.add_argument("tracks", nargs='+', type=Path, default=[], help='Path to tracks')
|
||||
add_model_flags(parser)
|
||||
parser.add_argument("-v", "--verbose", action="store_true")
|
||||
parser.add_argument("-o",
|
||||
"--out",
|
||||
type=Path,
|
||||
default=Path("separated"),
|
||||
help="Folder where to put extracted tracks. A subfolder "
|
||||
"with the model name will be created.")
|
||||
parser.add_argument("--filename",
|
||||
default="{track}/{stem}.{ext}",
|
||||
help="Set the name of output file. \n"
|
||||
'Use "{track}", "{trackext}", "{stem}", "{ext}" to use '
|
||||
"variables of track name without extension, track extension, "
|
||||
"stem name and default output file extension. \n"
|
||||
'Default is "{track}/{stem}.{ext}".')
|
||||
parser.add_argument("-d",
|
||||
"--device",
|
||||
default="cuda" if th.cuda.is_available() else "cpu",
|
||||
help="Device to use, default is cuda if available else cpu")
|
||||
parser.add_argument("--shifts",
|
||||
default=1,
|
||||
type=int,
|
||||
help="Number of random shifts for equivariant stabilization."
|
||||
"Increase separation time but improves quality for Demucs. 10 was used "
|
||||
"in the original paper.")
|
||||
parser.add_argument("--overlap",
|
||||
default=0.25,
|
||||
type=float,
|
||||
help="Overlap between the splits.")
|
||||
split_group = parser.add_mutually_exclusive_group()
|
||||
split_group.add_argument("--no-split",
|
||||
action="store_false",
|
||||
dest="split",
|
||||
default=True,
|
||||
help="Doesn't split audio in chunks. "
|
||||
"This can use large amounts of memory.")
|
||||
split_group.add_argument("--segment", type=int,
|
||||
help="Set split size of each chunk. "
|
||||
"This can help save memory of graphic card. ")
|
||||
parser.add_argument("--two-stems",
|
||||
dest="stem", metavar="STEM",
|
||||
help="Only separate audio into {STEM} and no_{STEM}. ")
|
||||
group = parser.add_mutually_exclusive_group()
|
||||
group.add_argument("--int24", action="store_true",
|
||||
help="Save wav output as 24 bits wav.")
|
||||
group.add_argument("--float32", action="store_true",
|
||||
help="Save wav output as float32 (2x bigger).")
|
||||
parser.add_argument("--clip-mode", default="rescale", choices=["rescale", "clamp"],
|
||||
help="Strategy for avoiding clipping: rescaling entire signal "
|
||||
"if necessary (rescale) or hard clipping (clamp).")
|
||||
format_group = parser.add_mutually_exclusive_group()
|
||||
format_group.add_argument("--flac", action="store_true",
|
||||
help="Convert the output wavs to flac.")
|
||||
format_group.add_argument("--mp3", action="store_true",
|
||||
help="Convert the output wavs to mp3.")
|
||||
parser.add_argument("--mp3-bitrate",
|
||||
default=320,
|
||||
type=int,
|
||||
help="Bitrate of converted mp3.")
|
||||
parser.add_argument("--mp3-preset", choices=range(2, 8), type=int, default=2,
|
||||
help="Encoder preset of MP3, 2 for highest quality, 7 for "
|
||||
"fastest speed. Default is 2")
|
||||
parser.add_argument("-j", "--jobs",
|
||||
default=0,
|
||||
type=int,
|
||||
help="Number of jobs. This can increase memory usage but will "
|
||||
"be much faster when multiple cores are available.")
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main(opts=None):
|
||||
parser = get_parser()
|
||||
args = parser.parse_args(opts)
|
||||
|
||||
try:
|
||||
model = get_model_from_args(args)
|
||||
except ModelLoadingError as error:
|
||||
fatal(error.args[0])
|
||||
|
||||
max_allowed_segment = float('inf')
|
||||
if isinstance(model, HTDemucs):
|
||||
max_allowed_segment = float(model.segment)
|
||||
elif isinstance(model, BagOfModels):
|
||||
max_allowed_segment = model.max_allowed_segment
|
||||
if args.segment is not None and args.segment > max_allowed_segment:
|
||||
fatal("Cannot use a Transformer model with a longer segment "
|
||||
f"than it was trained for. Maximum segment is: {max_allowed_segment}")
|
||||
|
||||
isinstance(model, BagOfModels)
|
||||
|
||||
model.cpu()
|
||||
model.eval()
|
||||
|
||||
if args.stem is not None and args.stem not in model.sources:
|
||||
fatal(
|
||||
'error: stem "{stem}" is not in selected model. STEM must be one of {sources}.'.format(
|
||||
stem=args.stem, sources=', '.join(model.sources)))
|
||||
out = args.out
|
||||
out.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
for track in args.tracks:
|
||||
if not track.exists():
|
||||
raise Exception("File " + str(track) + " does not exist. If the path contains spaces, "
|
||||
"please try again after surrounding the entire path with quotes")
|
||||
|
||||
log_step("audio_separation", 0, "separating the audio file")
|
||||
wav = load_track(track, model.audio_channels, model.samplerate)
|
||||
|
||||
ref = wav.mean(0)
|
||||
wav -= ref.mean()
|
||||
wav /= ref.std()
|
||||
sources = apply_model(model, wav[None], device=args.device, shifts=args.shifts,
|
||||
split=args.split, overlap=args.overlap, progress=True,
|
||||
num_workers=args.jobs, segment=args.segment)[0]
|
||||
sources *= ref.std()
|
||||
sources += ref.mean()
|
||||
|
||||
if args.mp3:
|
||||
ext = "mp3"
|
||||
elif args.flac:
|
||||
ext = "flac"
|
||||
else:
|
||||
ext = "wav"
|
||||
kwargs = {
|
||||
'samplerate': model.samplerate,
|
||||
'bitrate': args.mp3_bitrate,
|
||||
'preset': args.mp3_preset,
|
||||
'clip': args.clip_mode,
|
||||
'as_float': args.float32,
|
||||
'bits_per_sample': 24 if args.int24 else 16,
|
||||
}
|
||||
if args.stem is None:
|
||||
for source, name in zip(sources, model.sources):
|
||||
stem = out / args.filename.format(track=track.name.rsplit(".", 1)[0],
|
||||
trackext=track.name.rsplit(".", 1)[-1],
|
||||
stem=name, ext=ext)
|
||||
stem.parent.mkdir(parents=True, exist_ok=True)
|
||||
save_audio(source, str(stem), **kwargs)
|
||||
else:
|
||||
sources = list(sources)
|
||||
stem = out / args.filename.format(track=track.name.rsplit(".", 1)[0],
|
||||
trackext=track.name.rsplit(".", 1)[-1],
|
||||
stem=args.stem, ext=ext)
|
||||
stem.parent.mkdir(parents=True, exist_ok=True)
|
||||
save_audio(sources.pop(model.sources.index(args.stem)), str(stem), **kwargs)
|
||||
# Warning : after poping the stem, selected stem is no longer in the list 'sources'
|
||||
other_stem = th.zeros_like(sources[0])
|
||||
for i in sources:
|
||||
other_stem += i
|
||||
stem = out / args.filename.format(track=track.name.rsplit(".", 1)[0],
|
||||
trackext=track.name.rsplit(".", 1)[-1],
|
||||
stem="no_"+args.stem, ext=ext)
|
||||
stem.parent.mkdir(parents=True, exist_ok=True)
|
||||
save_audio(other_stem, str(stem), **kwargs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
405
demucs/solver.py
Normal file
405
demucs/solver.py
Normal file
@@ -0,0 +1,405 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""Main training loop."""
|
||||
|
||||
import logging
|
||||
|
||||
from dora import get_xp
|
||||
from dora.utils import write_and_rename
|
||||
from dora.log import LogProgress, bold
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from . import augment, distrib, states, pretrained
|
||||
from .apply import apply_model
|
||||
from .ema import ModelEMA
|
||||
from .evaluate import evaluate, new_sdr
|
||||
from .svd import svd_penalty
|
||||
from .utils import pull_metric, EMA
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _summary(metrics):
|
||||
return " | ".join(f"{key.capitalize()}={val}" for key, val in metrics.items())
|
||||
|
||||
|
||||
class Solver(object):
|
||||
def __init__(self, loaders, model, optimizer, args):
|
||||
self.args = args
|
||||
self.loaders = loaders
|
||||
|
||||
self.model = model
|
||||
self.optimizer = optimizer
|
||||
self.quantizer = states.get_quantizer(self.model, args.quant, self.optimizer)
|
||||
self.dmodel = distrib.wrap(model)
|
||||
self.device = next(iter(self.model.parameters())).device
|
||||
|
||||
# Exponential moving average of the model, either updated every batch or epoch.
|
||||
# The best model from all the EMAs and the original one is kept based on the valid
|
||||
# loss for the final best model.
|
||||
self.emas = {'batch': [], 'epoch': []}
|
||||
for kind in self.emas.keys():
|
||||
decays = getattr(args.ema, kind)
|
||||
device = self.device if kind == 'batch' else 'cpu'
|
||||
if decays:
|
||||
for decay in decays:
|
||||
self.emas[kind].append(ModelEMA(self.model, decay, device=device))
|
||||
|
||||
# data augment
|
||||
augments = [augment.Shift(shift=int(args.dset.samplerate * args.dset.shift),
|
||||
same=args.augment.shift_same)]
|
||||
if args.augment.flip:
|
||||
augments += [augment.FlipChannels(), augment.FlipSign()]
|
||||
for aug in ['scale', 'remix']:
|
||||
kw = getattr(args.augment, aug)
|
||||
if kw.proba:
|
||||
augments.append(getattr(augment, aug.capitalize())(**kw))
|
||||
self.augment = torch.nn.Sequential(*augments)
|
||||
|
||||
xp = get_xp()
|
||||
self.folder = xp.folder
|
||||
# Checkpoints
|
||||
self.checkpoint_file = xp.folder / 'checkpoint.th'
|
||||
self.best_file = xp.folder / 'best.th'
|
||||
logger.debug("Checkpoint will be saved to %s", self.checkpoint_file.resolve())
|
||||
self.best_state = None
|
||||
self.best_changed = False
|
||||
|
||||
self.link = xp.link
|
||||
self.history = self.link.history
|
||||
|
||||
self._reset()
|
||||
|
||||
def _serialize(self, epoch):
|
||||
package = {}
|
||||
package['state'] = self.model.state_dict()
|
||||
package['optimizer'] = self.optimizer.state_dict()
|
||||
package['history'] = self.history
|
||||
package['best_state'] = self.best_state
|
||||
package['args'] = self.args
|
||||
for kind, emas in self.emas.items():
|
||||
for k, ema in enumerate(emas):
|
||||
package[f'ema_{kind}_{k}'] = ema.state_dict()
|
||||
with write_and_rename(self.checkpoint_file) as tmp:
|
||||
torch.save(package, tmp)
|
||||
|
||||
save_every = self.args.save_every
|
||||
if save_every and (epoch + 1) % save_every == 0 and epoch + 1 != self.args.epochs:
|
||||
with write_and_rename(self.folder / f'checkpoint_{epoch + 1}.th') as tmp:
|
||||
torch.save(package, tmp)
|
||||
|
||||
if self.best_changed:
|
||||
# Saving only the latest best model.
|
||||
with write_and_rename(self.best_file) as tmp:
|
||||
package = states.serialize_model(self.model, self.args)
|
||||
package['state'] = self.best_state
|
||||
torch.save(package, tmp)
|
||||
self.best_changed = False
|
||||
|
||||
def _reset(self):
|
||||
"""Reset state of the solver, potentially using checkpoint."""
|
||||
if self.checkpoint_file.exists():
|
||||
logger.info(f'Loading checkpoint model: {self.checkpoint_file}')
|
||||
package = torch.load(self.checkpoint_file, 'cpu')
|
||||
self.model.load_state_dict(package['state'])
|
||||
self.optimizer.load_state_dict(package['optimizer'])
|
||||
self.history[:] = package['history']
|
||||
self.best_state = package['best_state']
|
||||
for kind, emas in self.emas.items():
|
||||
for k, ema in enumerate(emas):
|
||||
ema.load_state_dict(package[f'ema_{kind}_{k}'])
|
||||
elif self.args.continue_pretrained:
|
||||
model = pretrained.get_model(
|
||||
name=self.args.continue_pretrained,
|
||||
repo=self.args.pretrained_repo)
|
||||
self.model.load_state_dict(model.state_dict())
|
||||
elif self.args.continue_from:
|
||||
name = 'checkpoint.th'
|
||||
root = self.folder.parent
|
||||
cf = root / str(self.args.continue_from) / name
|
||||
logger.info("Loading from %s", cf)
|
||||
package = torch.load(cf, 'cpu')
|
||||
self.best_state = package['best_state']
|
||||
if self.args.continue_best:
|
||||
self.model.load_state_dict(package['best_state'], strict=False)
|
||||
else:
|
||||
self.model.load_state_dict(package['state'], strict=False)
|
||||
if self.args.continue_opt:
|
||||
self.optimizer.load_state_dict(package['optimizer'])
|
||||
|
||||
def _format_train(self, metrics: dict) -> dict:
|
||||
"""Formatting for train/valid metrics."""
|
||||
losses = {
|
||||
'loss': format(metrics['loss'], ".4f"),
|
||||
'reco': format(metrics['reco'], ".4f"),
|
||||
}
|
||||
if 'nsdr' in metrics:
|
||||
losses['nsdr'] = format(metrics['nsdr'], ".3f")
|
||||
if self.quantizer is not None:
|
||||
losses['ms'] = format(metrics['ms'], ".2f")
|
||||
if 'grad' in metrics:
|
||||
losses['grad'] = format(metrics['grad'], ".4f")
|
||||
if 'best' in metrics:
|
||||
losses['best'] = format(metrics['best'], '.4f')
|
||||
if 'bname' in metrics:
|
||||
losses['bname'] = metrics['bname']
|
||||
if 'penalty' in metrics:
|
||||
losses['penalty'] = format(metrics['penalty'], ".4f")
|
||||
if 'hloss' in metrics:
|
||||
losses['hloss'] = format(metrics['hloss'], ".4f")
|
||||
return losses
|
||||
|
||||
def _format_test(self, metrics: dict) -> dict:
|
||||
"""Formatting for test metrics."""
|
||||
losses = {}
|
||||
if 'sdr' in metrics:
|
||||
losses['sdr'] = format(metrics['sdr'], '.3f')
|
||||
if 'nsdr' in metrics:
|
||||
losses['nsdr'] = format(metrics['nsdr'], '.3f')
|
||||
for source in self.model.sources:
|
||||
key = f'sdr_{source}'
|
||||
if key in metrics:
|
||||
losses[key] = format(metrics[key], '.3f')
|
||||
key = f'nsdr_{source}'
|
||||
if key in metrics:
|
||||
losses[key] = format(metrics[key], '.3f')
|
||||
return losses
|
||||
|
||||
def train(self):
|
||||
# Optimizing the model
|
||||
if self.history:
|
||||
logger.info("Replaying metrics from previous run")
|
||||
for epoch, metrics in enumerate(self.history):
|
||||
formatted = self._format_train(metrics['train'])
|
||||
logger.info(
|
||||
bold(f'Train Summary | Epoch {epoch + 1} | {_summary(formatted)}'))
|
||||
formatted = self._format_train(metrics['valid'])
|
||||
logger.info(
|
||||
bold(f'Valid Summary | Epoch {epoch + 1} | {_summary(formatted)}'))
|
||||
if 'test' in metrics:
|
||||
formatted = self._format_test(metrics['test'])
|
||||
if formatted:
|
||||
logger.info(bold(f"Test Summary | Epoch {epoch + 1} | {_summary(formatted)}"))
|
||||
|
||||
epoch = 0
|
||||
for epoch in range(len(self.history), self.args.epochs):
|
||||
# Train one epoch
|
||||
self.model.train() # Turn on BatchNorm & Dropout
|
||||
metrics = {}
|
||||
logger.info('-' * 70)
|
||||
logger.info("Training...")
|
||||
metrics['train'] = self._run_one_epoch(epoch)
|
||||
formatted = self._format_train(metrics['train'])
|
||||
logger.info(
|
||||
bold(f'Train Summary | Epoch {epoch + 1} | {_summary(formatted)}'))
|
||||
|
||||
# Cross validation
|
||||
logger.info('-' * 70)
|
||||
logger.info('Cross validation...')
|
||||
self.model.eval() # Turn off Batchnorm & Dropout
|
||||
with torch.no_grad():
|
||||
valid = self._run_one_epoch(epoch, train=False)
|
||||
bvalid = valid
|
||||
bname = 'main'
|
||||
state = states.copy_state(self.model.state_dict())
|
||||
metrics['valid'] = {}
|
||||
metrics['valid']['main'] = valid
|
||||
key = self.args.test.metric
|
||||
for kind, emas in self.emas.items():
|
||||
for k, ema in enumerate(emas):
|
||||
with ema.swap():
|
||||
valid = self._run_one_epoch(epoch, train=False)
|
||||
name = f'ema_{kind}_{k}'
|
||||
metrics['valid'][name] = valid
|
||||
a = valid[key]
|
||||
b = bvalid[key]
|
||||
if key.startswith('nsdr'):
|
||||
a = -a
|
||||
b = -b
|
||||
if a < b:
|
||||
bvalid = valid
|
||||
state = ema.state
|
||||
bname = name
|
||||
metrics['valid'].update(bvalid)
|
||||
metrics['valid']['bname'] = bname
|
||||
|
||||
valid_loss = metrics['valid'][key]
|
||||
mets = pull_metric(self.link.history, f'valid.{key}') + [valid_loss]
|
||||
if key.startswith('nsdr'):
|
||||
best_loss = max(mets)
|
||||
else:
|
||||
best_loss = min(mets)
|
||||
metrics['valid']['best'] = best_loss
|
||||
if self.args.svd.penalty > 0:
|
||||
kw = dict(self.args.svd)
|
||||
kw.pop('penalty')
|
||||
with torch.no_grad():
|
||||
penalty = svd_penalty(self.model, exact=True, **kw)
|
||||
metrics['valid']['penalty'] = penalty
|
||||
|
||||
formatted = self._format_train(metrics['valid'])
|
||||
logger.info(
|
||||
bold(f'Valid Summary | Epoch {epoch + 1} | {_summary(formatted)}'))
|
||||
|
||||
# Save the best model
|
||||
if valid_loss == best_loss or self.args.dset.train_valid:
|
||||
logger.info(bold('New best valid loss %.4f'), valid_loss)
|
||||
self.best_state = states.copy_state(state)
|
||||
self.best_changed = True
|
||||
|
||||
# Eval model every `test.every` epoch or on last epoch
|
||||
should_eval = (epoch + 1) % self.args.test.every == 0
|
||||
is_last = epoch == self.args.epochs - 1
|
||||
# # Tries to detect divergence in a reliable way and finish job
|
||||
# # not to waste compute.
|
||||
# # Commented out as this was super specific to the MDX competition.
|
||||
# reco = metrics['valid']['main']['reco']
|
||||
# div = epoch >= 180 and reco > 0.18
|
||||
# div = div or epoch >= 100 and reco > 0.25
|
||||
# div = div and self.args.optim.loss == 'l1'
|
||||
# if div:
|
||||
# logger.warning("Finishing training early because valid loss is too high.")
|
||||
# is_last = True
|
||||
if should_eval or is_last:
|
||||
# Evaluate on the testset
|
||||
logger.info('-' * 70)
|
||||
logger.info('Evaluating on the test set...')
|
||||
# We switch to the best known model for testing
|
||||
if self.args.test.best:
|
||||
state = self.best_state
|
||||
else:
|
||||
state = states.copy_state(self.model.state_dict())
|
||||
compute_sdr = self.args.test.sdr and is_last
|
||||
with states.swap_state(self.model, state):
|
||||
with torch.no_grad():
|
||||
metrics['test'] = evaluate(self, compute_sdr=compute_sdr)
|
||||
formatted = self._format_test(metrics['test'])
|
||||
logger.info(bold(f"Test Summary | Epoch {epoch + 1} | {_summary(formatted)}"))
|
||||
self.link.push_metrics(metrics)
|
||||
|
||||
if distrib.rank == 0:
|
||||
# Save model each epoch
|
||||
self._serialize(epoch)
|
||||
logger.debug("Checkpoint saved to %s", self.checkpoint_file.resolve())
|
||||
if is_last:
|
||||
break
|
||||
|
||||
def _run_one_epoch(self, epoch, train=True):
|
||||
args = self.args
|
||||
data_loader = self.loaders['train'] if train else self.loaders['valid']
|
||||
if distrib.world_size > 1 and train:
|
||||
data_loader.sampler.set_epoch(epoch)
|
||||
|
||||
label = ["Valid", "Train"][train]
|
||||
name = label + f" | Epoch {epoch + 1}"
|
||||
total = len(data_loader)
|
||||
if args.max_batches:
|
||||
total = min(total, args.max_batches)
|
||||
logprog = LogProgress(logger, data_loader, total=total,
|
||||
updates=self.args.misc.num_prints, name=name)
|
||||
averager = EMA()
|
||||
|
||||
for idx, sources in enumerate(logprog):
|
||||
sources = sources.to(self.device)
|
||||
if train:
|
||||
sources = self.augment(sources)
|
||||
mix = sources.sum(dim=1)
|
||||
else:
|
||||
mix = sources[:, 0]
|
||||
sources = sources[:, 1:]
|
||||
|
||||
if not train and self.args.valid_apply:
|
||||
estimate = apply_model(self.model, mix, split=self.args.test.split, overlap=0)
|
||||
else:
|
||||
estimate = self.dmodel(mix)
|
||||
if train and hasattr(self.model, 'transform_target'):
|
||||
sources = self.model.transform_target(mix, sources)
|
||||
assert estimate.shape == sources.shape, (estimate.shape, sources.shape)
|
||||
dims = tuple(range(2, sources.dim()))
|
||||
|
||||
if args.optim.loss == 'l1':
|
||||
loss = F.l1_loss(estimate, sources, reduction='none')
|
||||
loss = loss.mean(dims).mean(0)
|
||||
reco = loss
|
||||
elif args.optim.loss == 'mse':
|
||||
loss = F.mse_loss(estimate, sources, reduction='none')
|
||||
loss = loss.mean(dims)
|
||||
reco = loss**0.5
|
||||
reco = reco.mean(0)
|
||||
else:
|
||||
raise ValueError(f"Invalid loss {self.args.loss}")
|
||||
weights = torch.tensor(args.weights).to(sources)
|
||||
loss = (loss * weights).sum() / weights.sum()
|
||||
|
||||
ms = 0
|
||||
if self.quantizer is not None:
|
||||
ms = self.quantizer.model_size()
|
||||
if args.quant.diffq:
|
||||
loss += args.quant.diffq * ms
|
||||
|
||||
losses = {}
|
||||
losses['reco'] = (reco * weights).sum() / weights.sum()
|
||||
losses['ms'] = ms
|
||||
|
||||
if not train:
|
||||
nsdrs = new_sdr(sources, estimate.detach()).mean(0)
|
||||
total = 0
|
||||
for source, nsdr, w in zip(self.model.sources, nsdrs, weights):
|
||||
losses[f'nsdr_{source}'] = nsdr
|
||||
total += w * nsdr
|
||||
losses['nsdr'] = total / weights.sum()
|
||||
|
||||
if train and args.svd.penalty > 0:
|
||||
kw = dict(args.svd)
|
||||
kw.pop('penalty')
|
||||
penalty = svd_penalty(self.model, **kw)
|
||||
losses['penalty'] = penalty
|
||||
loss += args.svd.penalty * penalty
|
||||
|
||||
losses['loss'] = loss
|
||||
|
||||
for k, source in enumerate(self.model.sources):
|
||||
losses[f'reco_{source}'] = reco[k]
|
||||
|
||||
# optimize model in training mode
|
||||
if train:
|
||||
loss.backward()
|
||||
grad_norm = 0
|
||||
grads = []
|
||||
for p in self.model.parameters():
|
||||
if p.grad is not None:
|
||||
grad_norm += p.grad.data.norm()**2
|
||||
grads.append(p.grad.data)
|
||||
losses['grad'] = grad_norm ** 0.5
|
||||
if args.optim.clip_grad:
|
||||
torch.nn.utils.clip_grad_norm_(
|
||||
self.model.parameters(),
|
||||
args.optim.clip_grad)
|
||||
|
||||
if self.args.flag == 'uns':
|
||||
for n, p in self.model.named_parameters():
|
||||
if p.grad is None:
|
||||
print('no grad', n)
|
||||
self.optimizer.step()
|
||||
self.optimizer.zero_grad()
|
||||
for ema in self.emas['batch']:
|
||||
ema.update()
|
||||
losses = averager(losses)
|
||||
logs = self._format_train(losses)
|
||||
logprog.update(**logs)
|
||||
# Just in case, clear some memory
|
||||
del loss, estimate, reco, ms
|
||||
if args.max_batches == idx:
|
||||
break
|
||||
if self.args.debug and train:
|
||||
break
|
||||
if self.args.flag == 'debug':
|
||||
break
|
||||
if train:
|
||||
for ema in self.emas['epoch']:
|
||||
ema.update()
|
||||
return distrib.average(losses, idx + 1)
|
||||
47
demucs/spec.py
Normal file
47
demucs/spec.py
Normal file
@@ -0,0 +1,47 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""Conveniance wrapper to perform STFT and iSTFT"""
|
||||
|
||||
import torch as th
|
||||
|
||||
|
||||
def spectro(x, n_fft=512, hop_length=None, pad=0):
|
||||
*other, length = x.shape
|
||||
x = x.reshape(-1, length)
|
||||
is_mps = x.device.type == 'mps'
|
||||
if is_mps:
|
||||
x = x.cpu()
|
||||
z = th.stft(x,
|
||||
n_fft * (1 + pad),
|
||||
hop_length or n_fft // 4,
|
||||
window=th.hann_window(n_fft).to(x),
|
||||
win_length=n_fft,
|
||||
normalized=True,
|
||||
center=True,
|
||||
return_complex=True,
|
||||
pad_mode='reflect')
|
||||
_, freqs, frame = z.shape
|
||||
return z.view(*other, freqs, frame)
|
||||
|
||||
|
||||
def ispectro(z, hop_length=None, length=None, pad=0):
|
||||
*other, freqs, frames = z.shape
|
||||
n_fft = 2 * freqs - 2
|
||||
z = z.view(-1, freqs, frames)
|
||||
win_length = n_fft // (1 + pad)
|
||||
is_mps = z.device.type == 'mps'
|
||||
if is_mps:
|
||||
z = z.cpu()
|
||||
x = th.istft(z,
|
||||
n_fft,
|
||||
hop_length,
|
||||
window=th.hann_window(win_length).to(z.real),
|
||||
win_length=win_length,
|
||||
normalized=True,
|
||||
length=length,
|
||||
center=True)
|
||||
_, length = x.shape
|
||||
return x.view(*other, length)
|
||||
163
demucs/states.py
Normal file
163
demucs/states.py
Normal file
@@ -0,0 +1,163 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""
|
||||
Utilities to save and load models.
|
||||
"""
|
||||
from contextlib import contextmanager
|
||||
|
||||
import functools
|
||||
import hashlib
|
||||
import inspect
|
||||
import io
|
||||
from pathlib import Path
|
||||
import warnings
|
||||
|
||||
from omegaconf import OmegaConf
|
||||
from dora.log import fatal
|
||||
import torch
|
||||
|
||||
|
||||
def _check_diffq():
|
||||
try:
|
||||
import diffq # noqa
|
||||
except ImportError:
|
||||
fatal('Trying to use DiffQ, but diffq is not installed.\n'
|
||||
'On Windows run: python.exe -m pip install diffq \n'
|
||||
'On Linux/Mac, run: python3 -m pip install diffq')
|
||||
|
||||
|
||||
def get_quantizer(model, args, optimizer=None):
|
||||
"""Return the quantizer given the XP quantization args."""
|
||||
quantizer = None
|
||||
if args.diffq:
|
||||
_check_diffq()
|
||||
from diffq import DiffQuantizer
|
||||
quantizer = DiffQuantizer(
|
||||
model, min_size=args.min_size, group_size=args.group_size)
|
||||
if optimizer is not None:
|
||||
quantizer.setup_optimizer(optimizer)
|
||||
elif args.qat:
|
||||
_check_diffq()
|
||||
from diffq import UniformQuantizer
|
||||
quantizer = UniformQuantizer(
|
||||
model, bits=args.qat, min_size=args.min_size)
|
||||
return quantizer
|
||||
|
||||
|
||||
def load_model(path_or_package, strict=False):
|
||||
"""Load a model from the given serialized model, either given as a dict (already loaded)
|
||||
or a path to a file on disk."""
|
||||
if isinstance(path_or_package, dict):
|
||||
package = path_or_package
|
||||
elif isinstance(path_or_package, (str, Path)):
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
path = path_or_package
|
||||
package = torch.load(path, 'cpu')
|
||||
else:
|
||||
raise ValueError(f"Invalid type for {path_or_package}.")
|
||||
|
||||
klass = package["klass"]
|
||||
args = package["args"]
|
||||
kwargs = package["kwargs"]
|
||||
|
||||
if strict:
|
||||
model = klass(*args, **kwargs)
|
||||
else:
|
||||
sig = inspect.signature(klass)
|
||||
for key in list(kwargs):
|
||||
if key not in sig.parameters:
|
||||
warnings.warn("Dropping inexistant parameter " + key)
|
||||
del kwargs[key]
|
||||
model = klass(*args, **kwargs)
|
||||
|
||||
state = package["state"]
|
||||
|
||||
set_state(model, state)
|
||||
return model
|
||||
|
||||
|
||||
def get_state(model, quantizer, half=False):
|
||||
"""Get the state from a model, potentially with quantization applied.
|
||||
If `half` is True, model are stored as half precision, which shouldn't impact performance
|
||||
but half the state size."""
|
||||
if quantizer is None:
|
||||
dtype = torch.half if half else None
|
||||
state = {k: p.data.to(device='cpu', dtype=dtype) for k, p in model.state_dict().items()}
|
||||
else:
|
||||
state = quantizer.get_quantized_state()
|
||||
state['__quantized'] = True
|
||||
return state
|
||||
|
||||
|
||||
def set_state(model, state, quantizer=None):
|
||||
"""Set the state on a given model."""
|
||||
if state.get('__quantized'):
|
||||
if quantizer is not None:
|
||||
quantizer.restore_quantized_state(model, state['quantized'])
|
||||
else:
|
||||
_check_diffq()
|
||||
from diffq import restore_quantized_state
|
||||
restore_quantized_state(model, state)
|
||||
else:
|
||||
model.load_state_dict(state)
|
||||
return state
|
||||
|
||||
|
||||
def save_with_checksum(content, path):
|
||||
"""Save the given value on disk, along with a sha256 hash.
|
||||
Should be used with the output of either `serialize_model` or `get_state`."""
|
||||
buf = io.BytesIO()
|
||||
torch.save(content, buf)
|
||||
sig = hashlib.sha256(buf.getvalue()).hexdigest()[:8]
|
||||
|
||||
path = path.parent / (path.stem + "-" + sig + path.suffix)
|
||||
path.write_bytes(buf.getvalue())
|
||||
|
||||
|
||||
def serialize_model(model, training_args, quantizer=None, half=True):
|
||||
args, kwargs = model._init_args_kwargs
|
||||
klass = model.__class__
|
||||
|
||||
state = get_state(model, quantizer, half)
|
||||
return {
|
||||
'klass': klass,
|
||||
'args': args,
|
||||
'kwargs': kwargs,
|
||||
'state': state,
|
||||
'training_args': OmegaConf.to_container(training_args, resolve=True),
|
||||
}
|
||||
|
||||
|
||||
def copy_state(state):
|
||||
return {k: v.cpu().clone() for k, v in state.items()}
|
||||
|
||||
|
||||
@contextmanager
|
||||
def swap_state(model, state):
|
||||
"""
|
||||
Context manager that swaps the state of a model, e.g:
|
||||
|
||||
# model is in old state
|
||||
with swap_state(model, new_state):
|
||||
# model in new state
|
||||
# model back to old state
|
||||
"""
|
||||
old_state = copy_state(model.state_dict())
|
||||
model.load_state_dict(state, strict=False)
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
model.load_state_dict(old_state)
|
||||
|
||||
|
||||
def capture_init(init):
|
||||
@functools.wraps(init)
|
||||
def __init__(self, *args, **kwargs):
|
||||
self._init_args_kwargs = (args, kwargs)
|
||||
init(self, *args, **kwargs)
|
||||
|
||||
return __init__
|
||||
83
demucs/svd.py
Normal file
83
demucs/svd.py
Normal file
@@ -0,0 +1,83 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""Ways to make the model stronger."""
|
||||
import random
|
||||
import torch
|
||||
|
||||
|
||||
def power_iteration(m, niters=1, bs=1):
|
||||
"""This is the power method. batch size is used to try multiple starting point in parallel."""
|
||||
assert m.dim() == 2
|
||||
assert m.shape[0] == m.shape[1]
|
||||
dim = m.shape[0]
|
||||
b = torch.randn(dim, bs, device=m.device, dtype=m.dtype)
|
||||
|
||||
for _ in range(niters):
|
||||
n = m.mm(b)
|
||||
norm = n.norm(dim=0, keepdim=True)
|
||||
b = n / (1e-10 + norm)
|
||||
|
||||
return norm.mean()
|
||||
|
||||
|
||||
# We need a shared RNG to make sure all the distributed worker will skip the penalty together,
|
||||
# as otherwise we wouldn't get any speed up.
|
||||
penalty_rng = random.Random(1234)
|
||||
|
||||
|
||||
def svd_penalty(model, min_size=0.1, dim=1, niters=2, powm=False, convtr=True,
|
||||
proba=1, conv_only=False, exact=False, bs=1):
|
||||
"""
|
||||
Penalty on the largest singular value for a layer.
|
||||
Args:
|
||||
- model: model to penalize
|
||||
- min_size: minimum size in MB of a layer to penalize.
|
||||
- dim: projection dimension for the svd_lowrank. Higher is better but slower.
|
||||
- niters: number of iterations in the algorithm used by svd_lowrank.
|
||||
- powm: use power method instead of lowrank SVD, my own experience
|
||||
is that it is both slower and less stable.
|
||||
- convtr: when True, differentiate between Conv and Transposed Conv.
|
||||
this is kept for compatibility with older experiments.
|
||||
- proba: probability to apply the penalty.
|
||||
- conv_only: only apply to conv and conv transposed, not LSTM
|
||||
(might not be reliable for other models than Demucs).
|
||||
- exact: use exact SVD (slow but useful at validation).
|
||||
- bs: batch_size for power method.
|
||||
"""
|
||||
total = 0
|
||||
if penalty_rng.random() > proba:
|
||||
return 0.
|
||||
|
||||
for m in model.modules():
|
||||
for name, p in m.named_parameters(recurse=False):
|
||||
if p.numel() / 2**18 < min_size:
|
||||
continue
|
||||
if convtr:
|
||||
if isinstance(m, (torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d)):
|
||||
if p.dim() in [3, 4]:
|
||||
p = p.transpose(0, 1).contiguous()
|
||||
if p.dim() == 3:
|
||||
p = p.view(len(p), -1)
|
||||
elif p.dim() == 4:
|
||||
p = p.view(len(p), -1)
|
||||
elif p.dim() == 1:
|
||||
continue
|
||||
elif conv_only:
|
||||
continue
|
||||
assert p.dim() == 2, (name, p.shape)
|
||||
if exact:
|
||||
estimate = torch.svd(p, compute_uv=False)[1].pow(2).max()
|
||||
elif powm:
|
||||
a, b = p.shape
|
||||
if a < b:
|
||||
n = p.mm(p.t())
|
||||
else:
|
||||
n = p.t().mm(p)
|
||||
estimate = power_iteration(n, niters, bs)
|
||||
else:
|
||||
estimate = torch.svd_lowrank(p, dim, niters)[1][0].pow(2)
|
||||
total += estimate
|
||||
return total / proba
|
||||
251
demucs/train.py
Normal file
251
demucs/train.py
Normal file
@@ -0,0 +1,251 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""Main training script entry point"""
|
||||
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
import sys
|
||||
|
||||
from dora import hydra_main
|
||||
import hydra
|
||||
from hydra.core.global_hydra import GlobalHydra
|
||||
from omegaconf import OmegaConf
|
||||
import torch
|
||||
from torch import nn
|
||||
import torchaudio
|
||||
from torch.utils.data import ConcatDataset
|
||||
|
||||
from . import distrib
|
||||
from .wav import get_wav_datasets, get_musdb_wav_datasets
|
||||
from .demucs import Demucs
|
||||
from .hdemucs import HDemucs
|
||||
from .htdemucs import HTDemucs
|
||||
from .repitch import RepitchedWrapper
|
||||
from .solver import Solver
|
||||
from .states import capture_init
|
||||
from .utils import random_subset
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class TorchHDemucsWrapper(nn.Module):
|
||||
"""Wrapper around torchaudio HDemucs implementation to provide the proper metadata
|
||||
for model evaluation.
|
||||
See https://pytorch.org/audio/stable/tutorials/hybrid_demucs_tutorial.html"""
|
||||
|
||||
@capture_init
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__()
|
||||
try:
|
||||
from torchaudio.models import HDemucs as TorchHDemucs
|
||||
except ImportError:
|
||||
raise ImportError("Please upgrade torchaudio for using its implementation of HDemucs")
|
||||
self.samplerate = kwargs.pop('samplerate')
|
||||
self.segment = kwargs.pop('segment')
|
||||
self.sources = kwargs['sources']
|
||||
self.torch_hdemucs = TorchHDemucs(**kwargs)
|
||||
|
||||
def forward(self, mix):
|
||||
return self.torch_hdemucs.forward(mix)
|
||||
|
||||
|
||||
def get_model(args):
|
||||
extra = {
|
||||
'sources': list(args.dset.sources),
|
||||
'audio_channels': args.dset.channels,
|
||||
'samplerate': args.dset.samplerate,
|
||||
'segment': args.model_segment or 4 * args.dset.segment,
|
||||
}
|
||||
klass = {
|
||||
'demucs': Demucs,
|
||||
'hdemucs': HDemucs,
|
||||
'htdemucs': HTDemucs,
|
||||
'torch_hdemucs': TorchHDemucsWrapper,
|
||||
}[args.model]
|
||||
kw = OmegaConf.to_container(getattr(args, args.model), resolve=True)
|
||||
model = klass(**extra, **kw)
|
||||
return model
|
||||
|
||||
|
||||
def get_optimizer(model, args):
|
||||
seen_params = set()
|
||||
other_params = []
|
||||
groups = []
|
||||
for n, module in model.named_modules():
|
||||
if hasattr(module, "make_optim_group"):
|
||||
group = module.make_optim_group()
|
||||
params = set(group["params"])
|
||||
assert params.isdisjoint(seen_params)
|
||||
seen_params |= set(params)
|
||||
groups.append(group)
|
||||
for param in model.parameters():
|
||||
if param not in seen_params:
|
||||
other_params.append(param)
|
||||
groups.insert(0, {"params": other_params})
|
||||
parameters = groups
|
||||
if args.optim.optim == "adam":
|
||||
return torch.optim.Adam(
|
||||
parameters,
|
||||
lr=args.optim.lr,
|
||||
betas=(args.optim.momentum, args.optim.beta2),
|
||||
weight_decay=args.optim.weight_decay,
|
||||
)
|
||||
elif args.optim.optim == "adamw":
|
||||
return torch.optim.AdamW(
|
||||
parameters,
|
||||
lr=args.optim.lr,
|
||||
betas=(args.optim.momentum, args.optim.beta2),
|
||||
weight_decay=args.optim.weight_decay,
|
||||
)
|
||||
else:
|
||||
raise ValueError("Invalid optimizer %s", args.optim.optimizer)
|
||||
|
||||
|
||||
def get_datasets(args):
|
||||
if args.dset.backend:
|
||||
torchaudio.set_audio_backend(args.dset.backend)
|
||||
if args.dset.use_musdb:
|
||||
train_set, valid_set = get_musdb_wav_datasets(args.dset)
|
||||
else:
|
||||
train_set, valid_set = [], []
|
||||
if args.dset.wav:
|
||||
extra_train_set, extra_valid_set = get_wav_datasets(args.dset)
|
||||
if len(args.dset.sources) <= 4:
|
||||
train_set = ConcatDataset([train_set, extra_train_set])
|
||||
valid_set = ConcatDataset([valid_set, extra_valid_set])
|
||||
else:
|
||||
train_set = extra_train_set
|
||||
valid_set = extra_valid_set
|
||||
|
||||
if args.dset.wav2:
|
||||
extra_train_set, extra_valid_set = get_wav_datasets(args.dset, "wav2")
|
||||
weight = args.dset.wav2_weight
|
||||
if weight is not None:
|
||||
b = len(train_set)
|
||||
e = len(extra_train_set)
|
||||
reps = max(1, round(e / b * (1 / weight - 1)))
|
||||
else:
|
||||
reps = 1
|
||||
train_set = ConcatDataset([train_set] * reps + [extra_train_set])
|
||||
if args.dset.wav2_valid:
|
||||
if weight is not None:
|
||||
b = len(valid_set)
|
||||
n_kept = int(round(weight * b / (1 - weight)))
|
||||
valid_set = ConcatDataset(
|
||||
[valid_set, random_subset(extra_valid_set, n_kept)]
|
||||
)
|
||||
else:
|
||||
valid_set = ConcatDataset([valid_set, extra_valid_set])
|
||||
if args.dset.valid_samples is not None:
|
||||
valid_set = random_subset(valid_set, args.dset.valid_samples)
|
||||
assert len(train_set)
|
||||
assert len(valid_set)
|
||||
return train_set, valid_set
|
||||
|
||||
|
||||
def get_solver(args, model_only=False):
|
||||
distrib.init()
|
||||
|
||||
torch.manual_seed(args.seed)
|
||||
model = get_model(args)
|
||||
if args.misc.show:
|
||||
logger.info(model)
|
||||
mb = sum(p.numel() for p in model.parameters()) * 4 / 2**20
|
||||
logger.info('Size: %.1f MB', mb)
|
||||
if hasattr(model, 'valid_length'):
|
||||
field = model.valid_length(1)
|
||||
logger.info('Field: %.1f ms', field / args.dset.samplerate * 1000)
|
||||
sys.exit(0)
|
||||
|
||||
# torch also initialize cuda seed if available
|
||||
if torch.cuda.is_available():
|
||||
model.cuda()
|
||||
|
||||
# optimizer
|
||||
optimizer = get_optimizer(model, args)
|
||||
|
||||
assert args.batch_size % distrib.world_size == 0
|
||||
args.batch_size //= distrib.world_size
|
||||
|
||||
if model_only:
|
||||
return Solver(None, model, optimizer, args)
|
||||
|
||||
train_set, valid_set = get_datasets(args)
|
||||
|
||||
if args.augment.repitch.proba:
|
||||
vocals = []
|
||||
if 'vocals' in args.dset.sources:
|
||||
vocals.append(args.dset.sources.index('vocals'))
|
||||
else:
|
||||
logger.warning('No vocal source found')
|
||||
if args.augment.repitch.proba:
|
||||
train_set = RepitchedWrapper(train_set, vocals=vocals, **args.augment.repitch)
|
||||
|
||||
logger.info("train/valid set size: %d %d", len(train_set), len(valid_set))
|
||||
train_loader = distrib.loader(
|
||||
train_set, batch_size=args.batch_size, shuffle=True,
|
||||
num_workers=args.misc.num_workers, drop_last=True)
|
||||
if args.dset.full_cv:
|
||||
valid_loader = distrib.loader(
|
||||
valid_set, batch_size=1, shuffle=False,
|
||||
num_workers=args.misc.num_workers)
|
||||
else:
|
||||
valid_loader = distrib.loader(
|
||||
valid_set, batch_size=args.batch_size, shuffle=False,
|
||||
num_workers=args.misc.num_workers, drop_last=True)
|
||||
loaders = {"train": train_loader, "valid": valid_loader}
|
||||
|
||||
# Construct Solver
|
||||
return Solver(loaders, model, optimizer, args)
|
||||
|
||||
|
||||
def get_solver_from_sig(sig, model_only=False):
|
||||
inst = GlobalHydra.instance()
|
||||
hyd = None
|
||||
if inst.is_initialized():
|
||||
hyd = inst.hydra
|
||||
inst.clear()
|
||||
xp = main.get_xp_from_sig(sig)
|
||||
if hyd is not None:
|
||||
inst.clear()
|
||||
inst.initialize(hyd)
|
||||
|
||||
with xp.enter(stack=True):
|
||||
return get_solver(xp.cfg, model_only)
|
||||
|
||||
|
||||
@hydra_main(config_path="../conf", config_name="config", version_base="1.1")
|
||||
def main(args):
|
||||
global __file__
|
||||
__file__ = hydra.utils.to_absolute_path(__file__)
|
||||
for attr in ["musdb", "wav", "metadata"]:
|
||||
val = getattr(args.dset, attr)
|
||||
if val is not None:
|
||||
setattr(args.dset, attr, hydra.utils.to_absolute_path(val))
|
||||
|
||||
os.environ["OMP_NUM_THREADS"] = "1"
|
||||
os.environ["MKL_NUM_THREADS"] = "1"
|
||||
|
||||
if args.misc.verbose:
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
logger.info("For logs, checkpoints and samples check %s", os.getcwd())
|
||||
logger.debug(args)
|
||||
from dora import get_xp
|
||||
logger.debug(get_xp().cfg)
|
||||
|
||||
solver = get_solver(args)
|
||||
solver.train()
|
||||
|
||||
|
||||
if '_DORA_TEST_PATH' in os.environ:
|
||||
main.dora.dir = Path(os.environ['_DORA_TEST_PATH'])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
839
demucs/transformer.py
Normal file
839
demucs/transformer.py
Normal file
@@ -0,0 +1,839 @@
|
||||
# Copyright (c) 2019-present, Meta, Inc.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
# First author is Simon Rouard.
|
||||
|
||||
import random
|
||||
import typing as tp
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import numpy as np
|
||||
import math
|
||||
from einops import rearrange
|
||||
|
||||
|
||||
def create_sin_embedding(
|
||||
length: int, dim: int, shift: int = 0, device="cpu", max_period=10000
|
||||
):
|
||||
# We aim for TBC format
|
||||
assert dim % 2 == 0
|
||||
pos = shift + torch.arange(length, device=device).view(-1, 1, 1)
|
||||
half_dim = dim // 2
|
||||
adim = torch.arange(dim // 2, device=device).view(1, 1, -1)
|
||||
phase = pos / (max_period ** (adim / (half_dim - 1)))
|
||||
return torch.cat(
|
||||
[
|
||||
torch.cos(phase),
|
||||
torch.sin(phase),
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
|
||||
|
||||
def create_2d_sin_embedding(d_model, height, width, device="cpu", max_period=10000):
|
||||
"""
|
||||
:param d_model: dimension of the model
|
||||
:param height: height of the positions
|
||||
:param width: width of the positions
|
||||
:return: d_model*height*width position matrix
|
||||
"""
|
||||
if d_model % 4 != 0:
|
||||
raise ValueError(
|
||||
"Cannot use sin/cos positional encoding with "
|
||||
"odd dimension (got dim={:d})".format(d_model)
|
||||
)
|
||||
pe = torch.zeros(d_model, height, width)
|
||||
# Each dimension use half of d_model
|
||||
d_model = int(d_model / 2)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0.0, d_model, 2) * -(math.log(max_period) / d_model)
|
||||
)
|
||||
pos_w = torch.arange(0.0, width).unsqueeze(1)
|
||||
pos_h = torch.arange(0.0, height).unsqueeze(1)
|
||||
pe[0:d_model:2, :, :] = (
|
||||
torch.sin(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
|
||||
)
|
||||
pe[1:d_model:2, :, :] = (
|
||||
torch.cos(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
|
||||
)
|
||||
pe[d_model::2, :, :] = (
|
||||
torch.sin(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
|
||||
)
|
||||
pe[d_model + 1:: 2, :, :] = (
|
||||
torch.cos(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
|
||||
)
|
||||
|
||||
return pe[None, :].to(device)
|
||||
|
||||
|
||||
def create_sin_embedding_cape(
|
||||
length: int,
|
||||
dim: int,
|
||||
batch_size: int,
|
||||
mean_normalize: bool,
|
||||
augment: bool, # True during training
|
||||
max_global_shift: float = 0.0, # delta max
|
||||
max_local_shift: float = 0.0, # epsilon max
|
||||
max_scale: float = 1.0,
|
||||
device: str = "cpu",
|
||||
max_period: float = 10000.0,
|
||||
):
|
||||
# We aim for TBC format
|
||||
assert dim % 2 == 0
|
||||
pos = 1.0 * torch.arange(length).view(-1, 1, 1) # (length, 1, 1)
|
||||
pos = pos.repeat(1, batch_size, 1) # (length, batch_size, 1)
|
||||
if mean_normalize:
|
||||
pos -= torch.nanmean(pos, dim=0, keepdim=True)
|
||||
|
||||
if augment:
|
||||
delta = np.random.uniform(
|
||||
-max_global_shift, +max_global_shift, size=[1, batch_size, 1]
|
||||
)
|
||||
delta_local = np.random.uniform(
|
||||
-max_local_shift, +max_local_shift, size=[length, batch_size, 1]
|
||||
)
|
||||
log_lambdas = np.random.uniform(
|
||||
-np.log(max_scale), +np.log(max_scale), size=[1, batch_size, 1]
|
||||
)
|
||||
pos = (pos + delta + delta_local) * np.exp(log_lambdas)
|
||||
|
||||
pos = pos.to(device)
|
||||
|
||||
half_dim = dim // 2
|
||||
adim = torch.arange(dim // 2, device=device).view(1, 1, -1)
|
||||
phase = pos / (max_period ** (adim / (half_dim - 1)))
|
||||
return torch.cat(
|
||||
[
|
||||
torch.cos(phase),
|
||||
torch.sin(phase),
|
||||
],
|
||||
dim=-1,
|
||||
).float()
|
||||
|
||||
|
||||
def get_causal_mask(length):
|
||||
pos = torch.arange(length)
|
||||
return pos > pos[:, None]
|
||||
|
||||
|
||||
def get_elementary_mask(
|
||||
T1,
|
||||
T2,
|
||||
mask_type,
|
||||
sparse_attn_window,
|
||||
global_window,
|
||||
mask_random_seed,
|
||||
sparsity,
|
||||
device,
|
||||
):
|
||||
"""
|
||||
When the input of the Decoder has length T1 and the output T2
|
||||
The mask matrix has shape (T2, T1)
|
||||
"""
|
||||
assert mask_type in ["diag", "jmask", "random", "global"]
|
||||
|
||||
if mask_type == "global":
|
||||
mask = torch.zeros(T2, T1, dtype=torch.bool)
|
||||
mask[:, :global_window] = True
|
||||
line_window = int(global_window * T2 / T1)
|
||||
mask[:line_window, :] = True
|
||||
|
||||
if mask_type == "diag":
|
||||
|
||||
mask = torch.zeros(T2, T1, dtype=torch.bool)
|
||||
rows = torch.arange(T2)[:, None]
|
||||
cols = (
|
||||
(T1 / T2 * rows + torch.arange(-sparse_attn_window, sparse_attn_window + 1))
|
||||
.long()
|
||||
.clamp(0, T1 - 1)
|
||||
)
|
||||
mask.scatter_(1, cols, torch.ones(1, dtype=torch.bool).expand_as(cols))
|
||||
|
||||
elif mask_type == "jmask":
|
||||
mask = torch.zeros(T2 + 2, T1 + 2, dtype=torch.bool)
|
||||
rows = torch.arange(T2 + 2)[:, None]
|
||||
t = torch.arange(0, int((2 * T1) ** 0.5 + 1))
|
||||
t = (t * (t + 1) / 2).int()
|
||||
t = torch.cat([-t.flip(0)[:-1], t])
|
||||
cols = (T1 / T2 * rows + t).long().clamp(0, T1 + 1)
|
||||
mask.scatter_(1, cols, torch.ones(1, dtype=torch.bool).expand_as(cols))
|
||||
mask = mask[1:-1, 1:-1]
|
||||
|
||||
elif mask_type == "random":
|
||||
gene = torch.Generator(device=device)
|
||||
gene.manual_seed(mask_random_seed)
|
||||
mask = (
|
||||
torch.rand(T1 * T2, generator=gene, device=device).reshape(T2, T1)
|
||||
> sparsity
|
||||
)
|
||||
|
||||
mask = mask.to(device)
|
||||
return mask
|
||||
|
||||
|
||||
def get_mask(
|
||||
T1,
|
||||
T2,
|
||||
mask_type,
|
||||
sparse_attn_window,
|
||||
global_window,
|
||||
mask_random_seed,
|
||||
sparsity,
|
||||
device,
|
||||
):
|
||||
"""
|
||||
Return a SparseCSRTensor mask that is a combination of elementary masks
|
||||
mask_type can be a combination of multiple masks: for instance "diag_jmask_random"
|
||||
"""
|
||||
from xformers.sparse import SparseCSRTensor
|
||||
# create a list
|
||||
mask_types = mask_type.split("_")
|
||||
|
||||
all_masks = [
|
||||
get_elementary_mask(
|
||||
T1,
|
||||
T2,
|
||||
mask,
|
||||
sparse_attn_window,
|
||||
global_window,
|
||||
mask_random_seed,
|
||||
sparsity,
|
||||
device,
|
||||
)
|
||||
for mask in mask_types
|
||||
]
|
||||
|
||||
final_mask = torch.stack(all_masks).sum(axis=0) > 0
|
||||
|
||||
return SparseCSRTensor.from_dense(final_mask[None])
|
||||
|
||||
|
||||
class ScaledEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_embeddings: int,
|
||||
embedding_dim: int,
|
||||
scale: float = 1.0,
|
||||
boost: float = 3.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
|
||||
self.embedding.weight.data *= scale / boost
|
||||
self.boost = boost
|
||||
|
||||
@property
|
||||
def weight(self):
|
||||
return self.embedding.weight * self.boost
|
||||
|
||||
def forward(self, x):
|
||||
return self.embedding(x) * self.boost
|
||||
|
||||
|
||||
class LayerScale(nn.Module):
|
||||
"""Layer scale from [Touvron et al 2021] (https://arxiv.org/pdf/2103.17239.pdf).
|
||||
This rescales diagonaly residual outputs close to 0 initially, then learnt.
|
||||
"""
|
||||
|
||||
def __init__(self, channels: int, init: float = 0, channel_last=False):
|
||||
"""
|
||||
channel_last = False corresponds to (B, C, T) tensors
|
||||
channel_last = True corresponds to (T, B, C) tensors
|
||||
"""
|
||||
super().__init__()
|
||||
self.channel_last = channel_last
|
||||
self.scale = nn.Parameter(torch.zeros(channels, requires_grad=True))
|
||||
self.scale.data[:] = init
|
||||
|
||||
def forward(self, x):
|
||||
if self.channel_last:
|
||||
return self.scale * x
|
||||
else:
|
||||
return self.scale[:, None] * x
|
||||
|
||||
|
||||
class MyGroupNorm(nn.GroupNorm):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
x: (B, T, C)
|
||||
if num_groups=1: Normalisation on all T and C together for each B
|
||||
"""
|
||||
x = x.transpose(1, 2)
|
||||
return super().forward(x).transpose(1, 2)
|
||||
|
||||
|
||||
class MyTransformerEncoderLayer(nn.TransformerEncoderLayer):
|
||||
def __init__(
|
||||
self,
|
||||
d_model,
|
||||
nhead,
|
||||
dim_feedforward=2048,
|
||||
dropout=0.1,
|
||||
activation=F.relu,
|
||||
group_norm=0,
|
||||
norm_first=False,
|
||||
norm_out=False,
|
||||
layer_norm_eps=1e-5,
|
||||
layer_scale=False,
|
||||
init_values=1e-4,
|
||||
device=None,
|
||||
dtype=None,
|
||||
sparse=False,
|
||||
mask_type="diag",
|
||||
mask_random_seed=42,
|
||||
sparse_attn_window=500,
|
||||
global_window=50,
|
||||
auto_sparsity=False,
|
||||
sparsity=0.95,
|
||||
batch_first=False,
|
||||
):
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super().__init__(
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
dim_feedforward=dim_feedforward,
|
||||
dropout=dropout,
|
||||
activation=activation,
|
||||
layer_norm_eps=layer_norm_eps,
|
||||
batch_first=batch_first,
|
||||
norm_first=norm_first,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
self.sparse = sparse
|
||||
self.auto_sparsity = auto_sparsity
|
||||
if sparse:
|
||||
if not auto_sparsity:
|
||||
self.mask_type = mask_type
|
||||
self.sparse_attn_window = sparse_attn_window
|
||||
self.global_window = global_window
|
||||
self.sparsity = sparsity
|
||||
if group_norm:
|
||||
self.norm1 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
self.norm2 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
|
||||
self.norm_out = None
|
||||
if self.norm_first & norm_out:
|
||||
self.norm_out = MyGroupNorm(num_groups=int(norm_out), num_channels=d_model)
|
||||
self.gamma_1 = (
|
||||
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
|
||||
)
|
||||
self.gamma_2 = (
|
||||
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
|
||||
)
|
||||
|
||||
if sparse:
|
||||
self.self_attn = MultiheadAttention(
|
||||
d_model, nhead, dropout=dropout, batch_first=batch_first,
|
||||
auto_sparsity=sparsity if auto_sparsity else 0,
|
||||
)
|
||||
self.__setattr__("src_mask", torch.zeros(1, 1))
|
||||
self.mask_random_seed = mask_random_seed
|
||||
|
||||
def forward(self, src, src_mask=None, src_key_padding_mask=None):
|
||||
"""
|
||||
if batch_first = False, src shape is (T, B, C)
|
||||
the case where batch_first=True is not covered
|
||||
"""
|
||||
device = src.device
|
||||
x = src
|
||||
T, B, C = x.shape
|
||||
if self.sparse and not self.auto_sparsity:
|
||||
assert src_mask is None
|
||||
src_mask = self.src_mask
|
||||
if src_mask.shape[-1] != T:
|
||||
src_mask = get_mask(
|
||||
T,
|
||||
T,
|
||||
self.mask_type,
|
||||
self.sparse_attn_window,
|
||||
self.global_window,
|
||||
self.mask_random_seed,
|
||||
self.sparsity,
|
||||
device,
|
||||
)
|
||||
self.__setattr__("src_mask", src_mask)
|
||||
|
||||
if self.norm_first:
|
||||
x = x + self.gamma_1(
|
||||
self._sa_block(self.norm1(x), src_mask, src_key_padding_mask)
|
||||
)
|
||||
x = x + self.gamma_2(self._ff_block(self.norm2(x)))
|
||||
|
||||
if self.norm_out:
|
||||
x = self.norm_out(x)
|
||||
else:
|
||||
x = self.norm1(
|
||||
x + self.gamma_1(self._sa_block(x, src_mask, src_key_padding_mask))
|
||||
)
|
||||
x = self.norm2(x + self.gamma_2(self._ff_block(x)))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class CrossTransformerEncoderLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
activation=F.relu,
|
||||
layer_norm_eps: float = 1e-5,
|
||||
layer_scale: bool = False,
|
||||
init_values: float = 1e-4,
|
||||
norm_first: bool = False,
|
||||
group_norm: bool = False,
|
||||
norm_out: bool = False,
|
||||
sparse=False,
|
||||
mask_type="diag",
|
||||
mask_random_seed=42,
|
||||
sparse_attn_window=500,
|
||||
global_window=50,
|
||||
sparsity=0.95,
|
||||
auto_sparsity=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
batch_first=False,
|
||||
):
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super().__init__()
|
||||
|
||||
self.sparse = sparse
|
||||
self.auto_sparsity = auto_sparsity
|
||||
if sparse:
|
||||
if not auto_sparsity:
|
||||
self.mask_type = mask_type
|
||||
self.sparse_attn_window = sparse_attn_window
|
||||
self.global_window = global_window
|
||||
self.sparsity = sparsity
|
||||
|
||||
self.cross_attn: nn.Module
|
||||
self.cross_attn = nn.MultiheadAttention(
|
||||
d_model, nhead, dropout=dropout, batch_first=batch_first)
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = nn.Linear(d_model, dim_feedforward, **factory_kwargs)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(dim_feedforward, d_model, **factory_kwargs)
|
||||
|
||||
self.norm_first = norm_first
|
||||
self.norm1: nn.Module
|
||||
self.norm2: nn.Module
|
||||
self.norm3: nn.Module
|
||||
if group_norm:
|
||||
self.norm1 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
self.norm2 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
self.norm3 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
else:
|
||||
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
|
||||
self.norm_out = None
|
||||
if self.norm_first & norm_out:
|
||||
self.norm_out = MyGroupNorm(num_groups=int(norm_out), num_channels=d_model)
|
||||
|
||||
self.gamma_1 = (
|
||||
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
|
||||
)
|
||||
self.gamma_2 = (
|
||||
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
|
||||
)
|
||||
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
|
||||
# Legacy string support for activation function.
|
||||
if isinstance(activation, str):
|
||||
self.activation = self._get_activation_fn(activation)
|
||||
else:
|
||||
self.activation = activation
|
||||
|
||||
if sparse:
|
||||
self.cross_attn = MultiheadAttention(
|
||||
d_model, nhead, dropout=dropout, batch_first=batch_first,
|
||||
auto_sparsity=sparsity if auto_sparsity else 0)
|
||||
if not auto_sparsity:
|
||||
self.__setattr__("mask", torch.zeros(1, 1))
|
||||
self.mask_random_seed = mask_random_seed
|
||||
|
||||
def forward(self, q, k, mask=None):
|
||||
"""
|
||||
Args:
|
||||
q: tensor of shape (T, B, C)
|
||||
k: tensor of shape (S, B, C)
|
||||
mask: tensor of shape (T, S)
|
||||
|
||||
"""
|
||||
device = q.device
|
||||
T, B, C = q.shape
|
||||
S, B, C = k.shape
|
||||
if self.sparse and not self.auto_sparsity:
|
||||
assert mask is None
|
||||
mask = self.mask
|
||||
if mask.shape[-1] != S or mask.shape[-2] != T:
|
||||
mask = get_mask(
|
||||
S,
|
||||
T,
|
||||
self.mask_type,
|
||||
self.sparse_attn_window,
|
||||
self.global_window,
|
||||
self.mask_random_seed,
|
||||
self.sparsity,
|
||||
device,
|
||||
)
|
||||
self.__setattr__("mask", mask)
|
||||
|
||||
if self.norm_first:
|
||||
x = q + self.gamma_1(self._ca_block(self.norm1(q), self.norm2(k), mask))
|
||||
x = x + self.gamma_2(self._ff_block(self.norm3(x)))
|
||||
if self.norm_out:
|
||||
x = self.norm_out(x)
|
||||
else:
|
||||
x = self.norm1(q + self.gamma_1(self._ca_block(q, k, mask)))
|
||||
x = self.norm2(x + self.gamma_2(self._ff_block(x)))
|
||||
|
||||
return x
|
||||
|
||||
# self-attention block
|
||||
def _ca_block(self, q, k, attn_mask=None):
|
||||
x = self.cross_attn(q, k, k, attn_mask=attn_mask, need_weights=False)[0]
|
||||
return self.dropout1(x)
|
||||
|
||||
# feed forward block
|
||||
def _ff_block(self, x):
|
||||
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
||||
return self.dropout2(x)
|
||||
|
||||
def _get_activation_fn(self, activation):
|
||||
if activation == "relu":
|
||||
return F.relu
|
||||
elif activation == "gelu":
|
||||
return F.gelu
|
||||
|
||||
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
|
||||
|
||||
|
||||
# ----------------- MULTI-BLOCKS MODELS: -----------------------
|
||||
|
||||
|
||||
class CrossTransformerEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
emb: str = "sin",
|
||||
hidden_scale: float = 4.0,
|
||||
num_heads: int = 8,
|
||||
num_layers: int = 6,
|
||||
cross_first: bool = False,
|
||||
dropout: float = 0.0,
|
||||
max_positions: int = 1000,
|
||||
norm_in: bool = True,
|
||||
norm_in_group: bool = False,
|
||||
group_norm: int = False,
|
||||
norm_first: bool = False,
|
||||
norm_out: bool = False,
|
||||
max_period: float = 10000.0,
|
||||
weight_decay: float = 0.0,
|
||||
lr: tp.Optional[float] = None,
|
||||
layer_scale: bool = False,
|
||||
gelu: bool = True,
|
||||
sin_random_shift: int = 0,
|
||||
weight_pos_embed: float = 1.0,
|
||||
cape_mean_normalize: bool = True,
|
||||
cape_augment: bool = True,
|
||||
cape_glob_loc_scale: list = [5000.0, 1.0, 1.4],
|
||||
sparse_self_attn: bool = False,
|
||||
sparse_cross_attn: bool = False,
|
||||
mask_type: str = "diag",
|
||||
mask_random_seed: int = 42,
|
||||
sparse_attn_window: int = 500,
|
||||
global_window: int = 50,
|
||||
auto_sparsity: bool = False,
|
||||
sparsity: float = 0.95,
|
||||
):
|
||||
super().__init__()
|
||||
"""
|
||||
"""
|
||||
assert dim % num_heads == 0
|
||||
|
||||
hidden_dim = int(dim * hidden_scale)
|
||||
|
||||
self.num_layers = num_layers
|
||||
# classic parity = 1 means that if idx%2 == 1 there is a
|
||||
# classical encoder else there is a cross encoder
|
||||
self.classic_parity = 1 if cross_first else 0
|
||||
self.emb = emb
|
||||
self.max_period = max_period
|
||||
self.weight_decay = weight_decay
|
||||
self.weight_pos_embed = weight_pos_embed
|
||||
self.sin_random_shift = sin_random_shift
|
||||
if emb == "cape":
|
||||
self.cape_mean_normalize = cape_mean_normalize
|
||||
self.cape_augment = cape_augment
|
||||
self.cape_glob_loc_scale = cape_glob_loc_scale
|
||||
if emb == "scaled":
|
||||
self.position_embeddings = ScaledEmbedding(max_positions, dim, scale=0.2)
|
||||
|
||||
self.lr = lr
|
||||
|
||||
activation: tp.Any = F.gelu if gelu else F.relu
|
||||
|
||||
self.norm_in: nn.Module
|
||||
self.norm_in_t: nn.Module
|
||||
if norm_in:
|
||||
self.norm_in = nn.LayerNorm(dim)
|
||||
self.norm_in_t = nn.LayerNorm(dim)
|
||||
elif norm_in_group:
|
||||
self.norm_in = MyGroupNorm(int(norm_in_group), dim)
|
||||
self.norm_in_t = MyGroupNorm(int(norm_in_group), dim)
|
||||
else:
|
||||
self.norm_in = nn.Identity()
|
||||
self.norm_in_t = nn.Identity()
|
||||
|
||||
# spectrogram layers
|
||||
self.layers = nn.ModuleList()
|
||||
# temporal layers
|
||||
self.layers_t = nn.ModuleList()
|
||||
|
||||
kwargs_common = {
|
||||
"d_model": dim,
|
||||
"nhead": num_heads,
|
||||
"dim_feedforward": hidden_dim,
|
||||
"dropout": dropout,
|
||||
"activation": activation,
|
||||
"group_norm": group_norm,
|
||||
"norm_first": norm_first,
|
||||
"norm_out": norm_out,
|
||||
"layer_scale": layer_scale,
|
||||
"mask_type": mask_type,
|
||||
"mask_random_seed": mask_random_seed,
|
||||
"sparse_attn_window": sparse_attn_window,
|
||||
"global_window": global_window,
|
||||
"sparsity": sparsity,
|
||||
"auto_sparsity": auto_sparsity,
|
||||
"batch_first": True,
|
||||
}
|
||||
|
||||
kwargs_classic_encoder = dict(kwargs_common)
|
||||
kwargs_classic_encoder.update({
|
||||
"sparse": sparse_self_attn,
|
||||
})
|
||||
kwargs_cross_encoder = dict(kwargs_common)
|
||||
kwargs_cross_encoder.update({
|
||||
"sparse": sparse_cross_attn,
|
||||
})
|
||||
|
||||
for idx in range(num_layers):
|
||||
if idx % 2 == self.classic_parity:
|
||||
|
||||
self.layers.append(MyTransformerEncoderLayer(**kwargs_classic_encoder))
|
||||
self.layers_t.append(
|
||||
MyTransformerEncoderLayer(**kwargs_classic_encoder)
|
||||
)
|
||||
|
||||
else:
|
||||
self.layers.append(CrossTransformerEncoderLayer(**kwargs_cross_encoder))
|
||||
|
||||
self.layers_t.append(
|
||||
CrossTransformerEncoderLayer(**kwargs_cross_encoder)
|
||||
)
|
||||
|
||||
def forward(self, x, xt):
|
||||
B, C, Fr, T1 = x.shape
|
||||
pos_emb_2d = create_2d_sin_embedding(
|
||||
C, Fr, T1, x.device, self.max_period
|
||||
) # (1, C, Fr, T1)
|
||||
pos_emb_2d = rearrange(pos_emb_2d, "b c fr t1 -> b (t1 fr) c")
|
||||
x = rearrange(x, "b c fr t1 -> b (t1 fr) c")
|
||||
x = self.norm_in(x)
|
||||
x = x + self.weight_pos_embed * pos_emb_2d
|
||||
|
||||
B, C, T2 = xt.shape
|
||||
xt = rearrange(xt, "b c t2 -> b t2 c") # now T2, B, C
|
||||
pos_emb = self._get_pos_embedding(T2, B, C, x.device)
|
||||
pos_emb = rearrange(pos_emb, "t2 b c -> b t2 c")
|
||||
xt = self.norm_in_t(xt)
|
||||
xt = xt + self.weight_pos_embed * pos_emb
|
||||
|
||||
for idx in range(self.num_layers):
|
||||
if idx % 2 == self.classic_parity:
|
||||
x = self.layers[idx](x)
|
||||
xt = self.layers_t[idx](xt)
|
||||
else:
|
||||
old_x = x
|
||||
x = self.layers[idx](x, xt)
|
||||
xt = self.layers_t[idx](xt, old_x)
|
||||
|
||||
x = rearrange(x, "b (t1 fr) c -> b c fr t1", t1=T1)
|
||||
xt = rearrange(xt, "b t2 c -> b c t2")
|
||||
return x, xt
|
||||
|
||||
def _get_pos_embedding(self, T, B, C, device):
|
||||
if self.emb == "sin":
|
||||
shift = random.randrange(self.sin_random_shift + 1)
|
||||
pos_emb = create_sin_embedding(
|
||||
T, C, shift=shift, device=device, max_period=self.max_period
|
||||
)
|
||||
elif self.emb == "cape":
|
||||
if self.training:
|
||||
pos_emb = create_sin_embedding_cape(
|
||||
T,
|
||||
C,
|
||||
B,
|
||||
device=device,
|
||||
max_period=self.max_period,
|
||||
mean_normalize=self.cape_mean_normalize,
|
||||
augment=self.cape_augment,
|
||||
max_global_shift=self.cape_glob_loc_scale[0],
|
||||
max_local_shift=self.cape_glob_loc_scale[1],
|
||||
max_scale=self.cape_glob_loc_scale[2],
|
||||
)
|
||||
else:
|
||||
pos_emb = create_sin_embedding_cape(
|
||||
T,
|
||||
C,
|
||||
B,
|
||||
device=device,
|
||||
max_period=self.max_period,
|
||||
mean_normalize=self.cape_mean_normalize,
|
||||
augment=False,
|
||||
)
|
||||
|
||||
elif self.emb == "scaled":
|
||||
pos = torch.arange(T, device=device)
|
||||
pos_emb = self.position_embeddings(pos)[:, None]
|
||||
|
||||
return pos_emb
|
||||
|
||||
def make_optim_group(self):
|
||||
group = {"params": list(self.parameters()), "weight_decay": self.weight_decay}
|
||||
if self.lr is not None:
|
||||
group["lr"] = self.lr
|
||||
return group
|
||||
|
||||
|
||||
# Attention Modules
|
||||
|
||||
|
||||
class MultiheadAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim,
|
||||
num_heads,
|
||||
dropout=0.0,
|
||||
bias=True,
|
||||
add_bias_kv=False,
|
||||
add_zero_attn=False,
|
||||
kdim=None,
|
||||
vdim=None,
|
||||
batch_first=False,
|
||||
auto_sparsity=None,
|
||||
):
|
||||
super().__init__()
|
||||
assert auto_sparsity is not None, "sanity check"
|
||||
self.num_heads = num_heads
|
||||
self.q = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
|
||||
self.k = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
|
||||
self.v = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
|
||||
self.attn_drop = torch.nn.Dropout(dropout)
|
||||
self.proj = torch.nn.Linear(embed_dim, embed_dim, bias)
|
||||
self.proj_drop = torch.nn.Dropout(dropout)
|
||||
self.batch_first = batch_first
|
||||
self.auto_sparsity = auto_sparsity
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
key_padding_mask=None,
|
||||
need_weights=True,
|
||||
attn_mask=None,
|
||||
average_attn_weights=True,
|
||||
):
|
||||
|
||||
if not self.batch_first: # N, B, C
|
||||
query = query.permute(1, 0, 2) # B, N_q, C
|
||||
key = key.permute(1, 0, 2) # B, N_k, C
|
||||
value = value.permute(1, 0, 2) # B, N_k, C
|
||||
B, N_q, C = query.shape
|
||||
B, N_k, C = key.shape
|
||||
|
||||
q = (
|
||||
self.q(query)
|
||||
.reshape(B, N_q, self.num_heads, C // self.num_heads)
|
||||
.permute(0, 2, 1, 3)
|
||||
)
|
||||
q = q.flatten(0, 1)
|
||||
k = (
|
||||
self.k(key)
|
||||
.reshape(B, N_k, self.num_heads, C // self.num_heads)
|
||||
.permute(0, 2, 1, 3)
|
||||
)
|
||||
k = k.flatten(0, 1)
|
||||
v = (
|
||||
self.v(value)
|
||||
.reshape(B, N_k, self.num_heads, C // self.num_heads)
|
||||
.permute(0, 2, 1, 3)
|
||||
)
|
||||
v = v.flatten(0, 1)
|
||||
|
||||
if self.auto_sparsity:
|
||||
assert attn_mask is None
|
||||
x = dynamic_sparse_attention(q, k, v, sparsity=self.auto_sparsity)
|
||||
else:
|
||||
x = scaled_dot_product_attention(q, k, v, attn_mask, dropout=self.attn_drop)
|
||||
x = x.reshape(B, self.num_heads, N_q, C // self.num_heads)
|
||||
|
||||
x = x.transpose(1, 2).reshape(B, N_q, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
if not self.batch_first:
|
||||
x = x.permute(1, 0, 2)
|
||||
return x, None
|
||||
|
||||
|
||||
def scaled_query_key_softmax(q, k, att_mask):
|
||||
from xformers.ops import masked_matmul
|
||||
q = q / (k.size(-1)) ** 0.5
|
||||
att = masked_matmul(q, k.transpose(-2, -1), att_mask)
|
||||
att = torch.nn.functional.softmax(att, -1)
|
||||
return att
|
||||
|
||||
|
||||
def scaled_dot_product_attention(q, k, v, att_mask, dropout):
|
||||
att = scaled_query_key_softmax(q, k, att_mask=att_mask)
|
||||
att = dropout(att)
|
||||
y = att @ v
|
||||
return y
|
||||
|
||||
|
||||
def _compute_buckets(x, R):
|
||||
qq = torch.einsum('btf,bfhi->bhti', x, R)
|
||||
qq = torch.cat([qq, -qq], dim=-1)
|
||||
buckets = qq.argmax(dim=-1)
|
||||
|
||||
return buckets.permute(0, 2, 1).byte().contiguous()
|
||||
|
||||
|
||||
def dynamic_sparse_attention(query, key, value, sparsity, infer_sparsity=True, attn_bias=None):
|
||||
# assert False, "The code for the custom sparse kernel is not ready for release yet."
|
||||
from xformers.ops import find_locations, sparse_memory_efficient_attention
|
||||
n_hashes = 32
|
||||
proj_size = 4
|
||||
query, key, value = [x.contiguous() for x in [query, key, value]]
|
||||
with torch.no_grad():
|
||||
R = torch.randn(1, query.shape[-1], n_hashes, proj_size // 2, device=query.device)
|
||||
bucket_query = _compute_buckets(query, R)
|
||||
bucket_key = _compute_buckets(key, R)
|
||||
row_offsets, column_indices = find_locations(
|
||||
bucket_query, bucket_key, sparsity, infer_sparsity)
|
||||
return sparse_memory_efficient_attention(
|
||||
query, key, value, row_offsets, column_indices, attn_bias)
|
||||
141
demucs/utils.py
Normal file
141
demucs/utils.py
Normal file
@@ -0,0 +1,141 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from collections import defaultdict
|
||||
from contextlib import contextmanager
|
||||
import math
|
||||
import os
|
||||
import tempfile
|
||||
import typing as tp
|
||||
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from torch.utils.data import Subset
|
||||
|
||||
|
||||
def unfold(a, kernel_size, stride):
|
||||
"""Given input of size [*OT, T], output Tensor of size [*OT, F, K]
|
||||
with K the kernel size, by extracting frames with the given stride.
|
||||
|
||||
This will pad the input so that `F = ceil(T / K)`.
|
||||
|
||||
see https://github.com/pytorch/pytorch/issues/60466
|
||||
"""
|
||||
*shape, length = a.shape
|
||||
n_frames = math.ceil(length / stride)
|
||||
tgt_length = (n_frames - 1) * stride + kernel_size
|
||||
a = F.pad(a, (0, tgt_length - length))
|
||||
strides = list(a.stride())
|
||||
assert strides[-1] == 1, 'data should be contiguous'
|
||||
strides = strides[:-1] + [stride, 1]
|
||||
return a.as_strided([*shape, n_frames, kernel_size], strides)
|
||||
|
||||
|
||||
def center_trim(tensor: torch.Tensor, reference: tp.Union[torch.Tensor, int]):
|
||||
"""
|
||||
Center trim `tensor` with respect to `reference`, along the last dimension.
|
||||
`reference` can also be a number, representing the length to trim to.
|
||||
If the size difference != 0 mod 2, the extra sample is removed on the right side.
|
||||
"""
|
||||
ref_size: int
|
||||
if isinstance(reference, torch.Tensor):
|
||||
ref_size = reference.size(-1)
|
||||
else:
|
||||
ref_size = reference
|
||||
delta = tensor.size(-1) - ref_size
|
||||
if delta < 0:
|
||||
raise ValueError("tensor must be larger than reference. " f"Delta is {delta}.")
|
||||
if delta:
|
||||
tensor = tensor[..., delta // 2:-(delta - delta // 2)]
|
||||
return tensor
|
||||
|
||||
|
||||
def pull_metric(history: tp.List[dict], name: str):
|
||||
out = []
|
||||
for metrics in history:
|
||||
metric = metrics
|
||||
for part in name.split("."):
|
||||
metric = metric[part]
|
||||
out.append(metric)
|
||||
return out
|
||||
|
||||
|
||||
def EMA(beta: float = 1):
|
||||
"""
|
||||
Exponential Moving Average callback.
|
||||
Returns a single function that can be called to repeatidly update the EMA
|
||||
with a dict of metrics. The callback will return
|
||||
the new averaged dict of metrics.
|
||||
|
||||
Note that for `beta=1`, this is just plain averaging.
|
||||
"""
|
||||
fix: tp.Dict[str, float] = defaultdict(float)
|
||||
total: tp.Dict[str, float] = defaultdict(float)
|
||||
|
||||
def _update(metrics: dict, weight: float = 1) -> dict:
|
||||
nonlocal total, fix
|
||||
for key, value in metrics.items():
|
||||
total[key] = total[key] * beta + weight * float(value)
|
||||
fix[key] = fix[key] * beta + weight
|
||||
return {key: tot / fix[key] for key, tot in total.items()}
|
||||
return _update
|
||||
|
||||
|
||||
def sizeof_fmt(num: float, suffix: str = 'B'):
|
||||
"""
|
||||
Given `num` bytes, return human readable size.
|
||||
Taken from https://stackoverflow.com/a/1094933
|
||||
"""
|
||||
for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']:
|
||||
if abs(num) < 1024.0:
|
||||
return "%3.1f%s%s" % (num, unit, suffix)
|
||||
num /= 1024.0
|
||||
return "%.1f%s%s" % (num, 'Yi', suffix)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def temp_filenames(count: int, delete=True):
|
||||
names = []
|
||||
try:
|
||||
for _ in range(count):
|
||||
names.append(tempfile.NamedTemporaryFile(delete=False).name)
|
||||
yield names
|
||||
finally:
|
||||
if delete:
|
||||
for name in names:
|
||||
os.unlink(name)
|
||||
|
||||
|
||||
def random_subset(dataset, max_samples: int, seed: int = 42):
|
||||
if max_samples >= len(dataset):
|
||||
return dataset
|
||||
|
||||
generator = torch.Generator().manual_seed(seed)
|
||||
perm = torch.randperm(len(dataset), generator=generator)
|
||||
return Subset(dataset, perm[:max_samples].tolist())
|
||||
|
||||
|
||||
class DummyPoolExecutor:
|
||||
class DummyResult:
|
||||
def __init__(self, func, *args, **kwargs):
|
||||
self.func = func
|
||||
self.args = args
|
||||
self.kwargs = kwargs
|
||||
|
||||
def result(self):
|
||||
return self.func(*self.args, **self.kwargs)
|
||||
|
||||
def __init__(self, workers=0):
|
||||
pass
|
||||
|
||||
def submit(self, func, *args, **kwargs):
|
||||
return DummyPoolExecutor.DummyResult(func, *args, **kwargs)
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_value, exc_tb):
|
||||
return
|
||||
254
demucs/wav.py
Normal file
254
demucs/wav.py
Normal file
@@ -0,0 +1,254 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""Loading wav based datasets, including MusdbHQ."""
|
||||
|
||||
from collections import OrderedDict
|
||||
import hashlib
|
||||
import math
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
import tqdm
|
||||
|
||||
import musdb
|
||||
import julius
|
||||
import torch as th
|
||||
from torch import distributed
|
||||
import torchaudio as ta
|
||||
from torch.nn import functional as F
|
||||
|
||||
from .audio import convert_audio_channels
|
||||
from . import distrib
|
||||
|
||||
MIXTURE = "mixture"
|
||||
EXT = ".wav"
|
||||
|
||||
|
||||
def _track_metadata(track, sources, normalize=True, ext=EXT):
|
||||
track_length = None
|
||||
track_samplerate = None
|
||||
mean = 0
|
||||
std = 1
|
||||
for source in sources + [MIXTURE]:
|
||||
file = track / f"{source}{ext}"
|
||||
if source == MIXTURE and not file.exists():
|
||||
audio = 0
|
||||
for sub_source in sources:
|
||||
sub_file = track / f"{sub_source}{ext}"
|
||||
sub_audio, sr = ta.load(sub_file)
|
||||
audio += sub_audio
|
||||
would_clip = audio.abs().max() >= 1
|
||||
if would_clip:
|
||||
assert ta.get_audio_backend() == 'soundfile', 'use dset.backend=soundfile'
|
||||
ta.save(file, audio, sr, encoding='PCM_F')
|
||||
|
||||
try:
|
||||
info = ta.info(str(file))
|
||||
except RuntimeError:
|
||||
print(file)
|
||||
raise
|
||||
length = info.num_frames
|
||||
if track_length is None:
|
||||
track_length = length
|
||||
track_samplerate = info.sample_rate
|
||||
elif track_length != length:
|
||||
raise ValueError(
|
||||
f"Invalid length for file {file}: "
|
||||
f"expecting {track_length} but got {length}.")
|
||||
elif info.sample_rate != track_samplerate:
|
||||
raise ValueError(
|
||||
f"Invalid sample rate for file {file}: "
|
||||
f"expecting {track_samplerate} but got {info.sample_rate}.")
|
||||
if source == MIXTURE and normalize:
|
||||
try:
|
||||
wav, _ = ta.load(str(file))
|
||||
except RuntimeError:
|
||||
print(file)
|
||||
raise
|
||||
wav = wav.mean(0)
|
||||
mean = wav.mean().item()
|
||||
std = wav.std().item()
|
||||
|
||||
return {"length": length, "mean": mean, "std": std, "samplerate": track_samplerate}
|
||||
|
||||
|
||||
def build_metadata(path, sources, normalize=True, ext=EXT):
|
||||
"""
|
||||
Build the metadata for `Wavset`.
|
||||
|
||||
Args:
|
||||
path (str or Path): path to dataset.
|
||||
sources (list[str]): list of sources to look for.
|
||||
normalize (bool): if True, loads full track and store normalization
|
||||
values based on the mixture file.
|
||||
ext (str): extension of audio files (default is .wav).
|
||||
"""
|
||||
|
||||
meta = {}
|
||||
path = Path(path)
|
||||
pendings = []
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
with ThreadPoolExecutor(8) as pool:
|
||||
for root, folders, files in os.walk(path, followlinks=True):
|
||||
root = Path(root)
|
||||
if root.name.startswith('.') or folders or root == path:
|
||||
continue
|
||||
name = str(root.relative_to(path))
|
||||
pendings.append((name, pool.submit(_track_metadata, root, sources, normalize, ext)))
|
||||
# meta[name] = _track_metadata(root, sources, normalize, ext)
|
||||
for name, pending in tqdm.tqdm(pendings, ncols=120):
|
||||
meta[name] = pending.result()
|
||||
return meta
|
||||
|
||||
|
||||
class Wavset:
|
||||
def __init__(
|
||||
self,
|
||||
root, metadata, sources,
|
||||
segment=None, shift=None, normalize=True,
|
||||
samplerate=44100, channels=2, ext=EXT):
|
||||
"""
|
||||
Waveset (or mp3 set for that matter). Can be used to train
|
||||
with arbitrary sources. Each track should be one folder inside of `path`.
|
||||
The folder should contain files named `{source}.{ext}`.
|
||||
|
||||
Args:
|
||||
root (Path or str): root folder for the dataset.
|
||||
metadata (dict): output from `build_metadata`.
|
||||
sources (list[str]): list of source names.
|
||||
segment (None or float): segment length in seconds. If `None`, returns entire tracks.
|
||||
shift (None or float): stride in seconds bewteen samples.
|
||||
normalize (bool): normalizes input audio, **based on the metadata content**,
|
||||
i.e. the entire track is normalized, not individual extracts.
|
||||
samplerate (int): target sample rate. if the file sample rate
|
||||
is different, it will be resampled on the fly.
|
||||
channels (int): target nb of channels. if different, will be
|
||||
changed onthe fly.
|
||||
ext (str): extension for audio files (default is .wav).
|
||||
|
||||
samplerate and channels are converted on the fly.
|
||||
"""
|
||||
self.root = Path(root)
|
||||
self.metadata = OrderedDict(metadata)
|
||||
self.segment = segment
|
||||
self.shift = shift or segment
|
||||
self.normalize = normalize
|
||||
self.sources = sources
|
||||
self.channels = channels
|
||||
self.samplerate = samplerate
|
||||
self.ext = ext
|
||||
self.num_examples = []
|
||||
for name, meta in self.metadata.items():
|
||||
track_duration = meta['length'] / meta['samplerate']
|
||||
if segment is None or track_duration < segment:
|
||||
examples = 1
|
||||
else:
|
||||
examples = int(math.ceil((track_duration - self.segment) / self.shift) + 1)
|
||||
self.num_examples.append(examples)
|
||||
|
||||
def __len__(self):
|
||||
return sum(self.num_examples)
|
||||
|
||||
def get_file(self, name, source):
|
||||
return self.root / name / f"{source}{self.ext}"
|
||||
|
||||
def __getitem__(self, index):
|
||||
for name, examples in zip(self.metadata, self.num_examples):
|
||||
if index >= examples:
|
||||
index -= examples
|
||||
continue
|
||||
meta = self.metadata[name]
|
||||
num_frames = -1
|
||||
offset = 0
|
||||
if self.segment is not None:
|
||||
offset = int(meta['samplerate'] * self.shift * index)
|
||||
num_frames = int(math.ceil(meta['samplerate'] * self.segment))
|
||||
wavs = []
|
||||
for source in self.sources:
|
||||
file = self.get_file(name, source)
|
||||
wav, _ = ta.load(str(file), frame_offset=offset, num_frames=num_frames)
|
||||
wav = convert_audio_channels(wav, self.channels)
|
||||
wavs.append(wav)
|
||||
|
||||
example = th.stack(wavs)
|
||||
example = julius.resample_frac(example, meta['samplerate'], self.samplerate)
|
||||
if self.normalize:
|
||||
example = (example - meta['mean']) / meta['std']
|
||||
if self.segment:
|
||||
length = int(self.segment * self.samplerate)
|
||||
example = example[..., :length]
|
||||
example = F.pad(example, (0, length - example.shape[-1]))
|
||||
return example
|
||||
|
||||
|
||||
def get_wav_datasets(args, name='wav'):
|
||||
"""Extract the wav datasets from the XP arguments."""
|
||||
path = getattr(args, name)
|
||||
sig = hashlib.sha1(str(path).encode()).hexdigest()[:8]
|
||||
metadata_file = Path(args.metadata) / ('wav_' + sig + ".json")
|
||||
train_path = Path(path) / "train"
|
||||
valid_path = Path(path) / "valid"
|
||||
if not metadata_file.is_file() and distrib.rank == 0:
|
||||
metadata_file.parent.mkdir(exist_ok=True, parents=True)
|
||||
train = build_metadata(train_path, args.sources)
|
||||
valid = build_metadata(valid_path, args.sources)
|
||||
json.dump([train, valid], open(metadata_file, "w"))
|
||||
if distrib.world_size > 1:
|
||||
distributed.barrier()
|
||||
train, valid = json.load(open(metadata_file))
|
||||
if args.full_cv:
|
||||
kw_cv = {}
|
||||
else:
|
||||
kw_cv = {'segment': args.segment, 'shift': args.shift}
|
||||
train_set = Wavset(train_path, train, args.sources,
|
||||
segment=args.segment, shift=args.shift,
|
||||
samplerate=args.samplerate, channels=args.channels,
|
||||
normalize=args.normalize)
|
||||
valid_set = Wavset(valid_path, valid, [MIXTURE] + list(args.sources),
|
||||
samplerate=args.samplerate, channels=args.channels,
|
||||
normalize=args.normalize, **kw_cv)
|
||||
return train_set, valid_set
|
||||
|
||||
|
||||
def _get_musdb_valid():
|
||||
# Return musdb valid set.
|
||||
import yaml
|
||||
setup_path = Path(musdb.__path__[0]) / 'configs' / 'mus.yaml'
|
||||
setup = yaml.safe_load(open(setup_path, 'r'))
|
||||
return setup['validation_tracks']
|
||||
|
||||
|
||||
def get_musdb_wav_datasets(args):
|
||||
"""Extract the musdb dataset from the XP arguments."""
|
||||
sig = hashlib.sha1(str(args.musdb).encode()).hexdigest()[:8]
|
||||
metadata_file = Path(args.metadata) / ('musdb_' + sig + ".json")
|
||||
root = Path(args.musdb) / "train"
|
||||
if not metadata_file.is_file() and distrib.rank == 0:
|
||||
metadata_file.parent.mkdir(exist_ok=True, parents=True)
|
||||
metadata = build_metadata(root, args.sources)
|
||||
json.dump(metadata, open(metadata_file, "w"))
|
||||
if distrib.world_size > 1:
|
||||
distributed.barrier()
|
||||
metadata = json.load(open(metadata_file))
|
||||
|
||||
valid_tracks = _get_musdb_valid()
|
||||
if args.train_valid:
|
||||
metadata_train = metadata
|
||||
else:
|
||||
metadata_train = {name: meta for name, meta in metadata.items() if name not in valid_tracks}
|
||||
metadata_valid = {name: meta for name, meta in metadata.items() if name in valid_tracks}
|
||||
if args.full_cv:
|
||||
kw_cv = {}
|
||||
else:
|
||||
kw_cv = {'segment': args.segment, 'shift': args.shift}
|
||||
train_set = Wavset(root, metadata_train, args.sources,
|
||||
segment=args.segment, shift=args.shift,
|
||||
samplerate=args.samplerate, channels=args.channels,
|
||||
normalize=args.normalize)
|
||||
valid_set = Wavset(root, metadata_valid, [MIXTURE] + list(args.sources),
|
||||
samplerate=args.samplerate, channels=args.channels,
|
||||
normalize=args.normalize, **kw_cv)
|
||||
return train_set, valid_set
|
||||
9
demucs/wdemucs.py
Normal file
9
demucs/wdemucs.py
Normal file
@@ -0,0 +1,9 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
# For compat
|
||||
from .hdemucs import HDemucs
|
||||
|
||||
WDemucs = HDemucs
|
||||
Reference in New Issue
Block a user