generated from thinkode/modelRepository
Initial commit and v1.0
This commit is contained in:
66
demucs/ema.py
Normal file
66
demucs/ema.py
Normal file
@@ -0,0 +1,66 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# Inspired from https://github.com/rwightman/pytorch-image-models
|
||||
from contextlib import contextmanager
|
||||
|
||||
import torch
|
||||
|
||||
from .states import swap_state
|
||||
|
||||
|
||||
class ModelEMA:
|
||||
"""
|
||||
Perform EMA on a model. You can switch to the EMA weights temporarily
|
||||
with the `swap` method.
|
||||
|
||||
ema = ModelEMA(model)
|
||||
with ema.swap():
|
||||
# compute valid metrics with averaged model.
|
||||
"""
|
||||
def __init__(self, model, decay=0.9999, unbias=True, device='cpu'):
|
||||
self.decay = decay
|
||||
self.model = model
|
||||
self.state = {}
|
||||
self.count = 0
|
||||
self.device = device
|
||||
self.unbias = unbias
|
||||
|
||||
self._init()
|
||||
|
||||
def _init(self):
|
||||
for key, val in self.model.state_dict().items():
|
||||
if val.dtype != torch.float32:
|
||||
continue
|
||||
device = self.device or val.device
|
||||
if key not in self.state:
|
||||
self.state[key] = val.detach().to(device, copy=True)
|
||||
|
||||
def update(self):
|
||||
if self.unbias:
|
||||
self.count = self.count * self.decay + 1
|
||||
w = 1 / self.count
|
||||
else:
|
||||
w = 1 - self.decay
|
||||
for key, val in self.model.state_dict().items():
|
||||
if val.dtype != torch.float32:
|
||||
continue
|
||||
device = self.device or val.device
|
||||
self.state[key].mul_(1 - w)
|
||||
self.state[key].add_(val.detach().to(device), alpha=w)
|
||||
|
||||
@contextmanager
|
||||
def swap(self):
|
||||
with swap_state(self.model, self.state):
|
||||
yield
|
||||
|
||||
def state_dict(self):
|
||||
return {'state': self.state, 'count': self.count}
|
||||
|
||||
def load_state_dict(self, state):
|
||||
self.count = state['count']
|
||||
for k, v in state['state'].items():
|
||||
self.state[k].copy_(v)
|
||||
Reference in New Issue
Block a user